Your Good Partner in Biology Research

細胞因子和神經(jīng)炎癥

細胞因子介導細胞之間的溝通,參與細胞復雜行為的活動。在腦部神經(jīng)系統(tǒng)疾病,阿爾茨海默病(AD)、肌萎縮側(cè)索硬化癥(ALS)、帕金森病和亨廷頓氏舞蹈癥中,神經(jīng)炎癥為常見癥狀。神經(jīng)炎癥反應在腦損傷的發(fā)病機制中起重要作用,并常伴有促炎細胞因子和趨化因子的釋放。本文主要介紹神經(jīng)炎癥產(chǎn)生的促炎細胞因子的作用。

神經(jīng)炎癥的來源是什么?

在介紹神經(jīng)炎癥產(chǎn)生的促炎細胞因子之前,先了解一下神經(jīng)炎癥的來源。神經(jīng)炎癥包括神經(jīng)系統(tǒng)對損傷、感染或神經(jīng)退行性疾病的生化和細胞反應。衰老、代謝性疾病和病毒感染是炎癥的主要來源,可影響血管和神經(jīng)元,導致神經(jīng)退行性疾病,如SVD,小血管病[1] (圖1)。

神經(jīng)炎癥的來源

圖1. 神經(jīng)炎癥的來源

*圖片來源于Mol Med Rep 出版物[1]

有研究表明,在高血壓、糖尿病、抑郁癥、癡呆癥或腦損傷等衰老和代謝性疾病中,神經(jīng)炎癥的分子機制很可能相同 [2]。以老年人為例,炎癥機制與癡呆和功能障礙的發(fā)病機制有關(guān)。全身和局部中樞神經(jīng)系統(tǒng)炎癥能導致小血管?。⊿VD)引起的血管性癡呆 [3][4],推測微血管改變導致慢性低灌注狀態(tài),促使少突膠質(zhì)細胞持續(xù)死亡和髓鞘纖維連續(xù)變性,使得低級炎癥導致腦卒中風險增大[5]。

神經(jīng)炎癥中的促炎細胞因子

神經(jīng)炎癥,往往在炎癥性脫髓鞘疾?。ɡ?,多發(fā)性硬化癥)和感染(細菌性和病毒性腦炎)中發(fā)生,其特征是白細胞侵入中樞神經(jīng)系統(tǒng)和血腦屏障(BBB)完整性破壞。淋巴細胞和骨髓細胞是組織損傷的主要介質(zhì),向組織輸送細胞因子,促進炎癥級聯(lián)。研究顯示,許多促炎細胞因子是入侵白細胞介導的神經(jīng)炎癥中的關(guān)鍵因子,包括IL-23、IL-6、IL-1β、IFNγTNFGM-CSF[6][7][8] (圖2)。IL-1β和IL-6是炎癥中樞神經(jīng)系統(tǒng)中兩種重要的細胞因子。IL-23誘導幼稚CD4+T細胞分化為高致病性的Thl7細胞。粒細胞-巨噬細胞集落刺激因子(GM-CSF)誘導組織損傷[9]

神經(jīng)炎癥的示意圖

圖2. 神經(jīng)炎癥的示意圖

*圖片來源于Nat Rev Immunol 出版物

IL-23和神經(jīng)炎癥

IL-23是一種異源性細胞因子,由IL-23特有的p19亞基和與IL-12共有的p40亞基組成。IL-23主要由次級淋巴組織中的抗原呈遞細胞(APCs)產(chǎn)生,比如巨噬細胞、樹突狀細胞和小膠質(zhì)細胞等。IL-23使T細胞向不同的功能表型分化,如產(chǎn)生IL-17的T輔助細胞(Th17)等[10]。研究表明,IL-23/Th17在神經(jīng)炎癥中起著關(guān)鍵作用[11]。

阻斷IL-23可改善實驗性自身免疫性腦脊髓炎,這是一種多發(fā)性硬化癥(MS)的動物模型,為中樞神經(jīng)系統(tǒng)的炎癥性脫髓鞘疾病[12]。一般認為,MS發(fā)生于急性炎癥病變,由于血腦屏障(BBB)的破壞,急性炎癥病變由自主反應性T細胞和B細胞介導。這種神經(jīng)炎癥反應導致了由T細胞,B細胞和巨噬細胞組成的炎性細胞的浸潤以及脫髓鞘的局灶斑塊的形成。YuhongYang等報道,IL-23驅(qū)動的Th-17細胞在MS和EAE發(fā)病機制中起主要作用[13]。此外,Li等報道,在活動性和慢性活動性多發(fā)性硬化病變中,活化的巨噬細胞/小膠質(zhì)細胞產(chǎn)生IL-23 p19[14]。

IL-6和神經(jīng)炎癥

如前所述,AD患者死后腦內(nèi)普遍存在神經(jīng)炎癥[15]。β-淀粉樣蛋白(Aβ)沉積是AD病理的標志。許多研究證實,Aβ在培養(yǎng)中可誘導星形膠質(zhì)細胞和小膠質(zhì)細胞的IL-6表達[16]。在海馬神經(jīng)元中,Aβ和IL-6均能誘導突觸功能障礙[17]。

AD能伴隨著IL-6水平的上升而上升,但它不能作為生物標志物,因為它也會隨著年齡增長而增加。星形膠質(zhì)細胞和小膠質(zhì)細胞都可以產(chǎn)生IL-6,IL-6誘導它們增殖和激活,并增強炎癥介質(zhì)的產(chǎn)生和釋放,包括前列腺素、細胞因子、趨化因子和急性期蛋白,如APP。此外,IL-6還能上調(diào)cdk5/p35復合物,該復合物參與Tau蛋白的過度磷酸化。

IL-1β與神經(jīng)炎癥

IL-1β屬于IL-1家族的成員,是最早發(fā)現(xiàn)的白細胞介素,通過IL-1R1信號傳導發(fā)揮促炎反應[18]。神經(jīng)炎癥被定義為大腦對損傷的先天性免疫反應。神經(jīng)炎癥反應的標志是表型膠質(zhì)激活和免疫信號分子的產(chǎn)生。

IL-1β與體內(nèi)急性神經(jīng)炎癥形成的過程密切相關(guān)。嚙齒動物的大腦中的IL-1β,會引起星形膠質(zhì)細胞和小膠質(zhì)細胞的快速激活。通過在人體中給藥L-1β或在腦中表達IL-1β的小鼠中,證明了IL-1β能夠引發(fā)自身表達的增強[19]。此外,反哺行為導致IL-1局部的升高就能驅(qū)動大腦中的神經(jīng)炎癥變化。

IFNγ與神經(jīng)炎癥

IFNγ是一種促炎細胞因子,由外周細胞,如T淋巴細胞、自然殺傷細胞(NK)和NKT細胞產(chǎn)生。此外,中樞神經(jīng)系統(tǒng)(CNS)細胞在特定的刺激下也能產(chǎn)生。在健康腦實質(zhì)中T淋巴細胞、NK和NKT細胞中,IFNγ稀少。IFNγ被認為僅在中樞神經(jīng)系統(tǒng)感染、炎癥性疾病、外傷和腦卒中等病理條件下對腦功能起作用[20]。Sun L等報道抗IFN-γ抗體可加重神經(jīng)炎癥的急性病程,導致體內(nèi)神經(jīng)細胞凋亡。促炎細胞因子IFN-γ通過誘導星形膠質(zhì)細胞分泌的IL-6在急性神經(jīng)炎癥期間提供神經(jīng)保護[21]。

TNF和神經(jīng)炎癥

TNF又稱TNF-α,炎癥中的一種關(guān)鍵介質(zhì),具有抗菌免疫等多種正常生理功能。神經(jīng)炎癥通常是與大腦相關(guān)的炎癥,它能激活小膠質(zhì)細胞和炎癥介質(zhì)的表達,但沒有水腫和中性粒細胞浸潤等外周炎癥的典型特征[22]

NFκB是激活許多促炎癥基因轉(zhuǎn)錄的最重要轉(zhuǎn)錄因子之一TNF-α誘導NFκB激活,這使TNF-α成為神經(jīng)炎癥關(guān)鍵細胞因子礎。有研究表明,TNF-α至少誘導5種不同類型的信號,包括NFκB的激活、細胞凋亡途徑、細胞外信號調(diào)節(jié)激酶(ERK)、p38絲裂原激活蛋白激酶(p38MAPK)和c-Jun N端激酶(JNK)[23][24]。

GM-CSF和神經(jīng)炎癥

多發(fā)性硬化癥是典型的中樞神經(jīng)系統(tǒng)(CNS)炎癥性疾病。MS病變中包含不同的免疫細胞,但個別細胞類型與疾病病因密切相關(guān)。在實驗性自身免疫性腦脊髓炎(EAE)中,自身反應性輔助性T(Th)細胞通過產(chǎn)生粒細胞-巨噬細胞集落刺激因子(GM-CSF)作用于髓細胞,誘發(fā)中樞神經(jīng)系統(tǒng)炎癥[25]。此外,GMCSF參與T H細胞和骨髓細胞之間的溝通。GM-CSF是病原性T H細胞在IL-23R參與下產(chǎn)生的細胞因子。雖然GM-CSF缺乏會導致EAE的抗原特異性耐受IL7的研究先于有關(guān)IL-17在神經(jīng)炎癥中的作用,但直到最近,研究發(fā)現(xiàn)了T細胞分泌的GM-CSF與疾病進展之間的聯(lián)系。

參考文獻:

[1] WEI-WEI CHEN, XIA ZHANG, et al. Role of neuroinflammation in neurodegenerative diseases (Review) [J]. Mol Med Rep. 2016, 13(4): 3391–3396.

[2] Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target [J]. J Neuroinflammation. 2014, 11:151.

[3] de Leeuw FE, de Groot JC, et al. Hypertension and cerebral white matter lesions in a prospective cohort study [J]. Brain. 2002, 125:765–772.

[4] Schiffrin EL. Inflammation, immunity and development of essential hypertension [J]. J Hypertens. 2014, 32:228–229.

[5] Shimizu M, Ishikawa J, et al. The relationship between the morning blood pressure surge and low-grade inflammation on silent cerebral infarct and clinical stroke events [J]. Atherosclerosis. 2011, 219:316–321.

[6] Candice M. Brown, Tara A. Mulcahey, et al. Production of Proinflammatory Cytokines and Chemokines During Neuroinflammation: Novel Roles for Estrogen Receptors α and β [J]. Endocrinology. 2010, 151(10): 4916–4925.

[7] Hu, W. T. et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease [J]. Neurology. 2012, 79, 897–905.

[8] Patel, N. S. et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease [J]. J. Neuroinflamm. 2005, 2, 9.

[9] Burkhard Becher, Sabine Spath, et al. Cytokine networks in neuroinflammation [J]. Nat Rev Immunol. 2017, 17(1):49-59.

[10] Aggarwal, S., Ghilardi, N., et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17 [J]. J. Biol. Chem. 2003, 278, 1910–1914.

[11] Hirokazu Hara, Dai Kimoto, et al. Apomorphine prevents LPS-induced IL-23 p19 mRNA expression via inhibition of JNK and ATF4 in HAPI cells [J]. European Journal of Pharmacology. 2017, 795: 108–114.

[12] Cua, D.J., Sherlock, J., et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain [J]. Nature. 2003, 421, 744–748.

[13] YuhongYang, Amy E.Lovett-Racke, et al. Role of IL-12/IL-23 in the Pathogenesis of Multiple Sclerosis [J]. Neuroinflammation. 2011, 6: 107-136.

[14] Li, Y., Chu, N., et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia [J]. Brain, 2007, 130, 490–501.

[15] Ya-Ying Wu, Jung-Lung Hsu, et al. Alterations of the Neuroinflammatory Markers IL-6 and TRAIL in Alzheimer's Disease [J]. Dement Geriatr Cogn Dis Extra. 2015, 5(3): 424–434.

[16] Lee KS, et al. Peripheral cytokines and chemokines in Alzheimer's disease [J]. Dement Geriatr Cogn Disord. 200, 28:281–287.

[17] Walsh KP, et al. Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons [J]. PLoS One. 2014, 9:e95995.

[18] Andrew S. Mendiola and Astrid E. Cardona. The IL-1β phenomena in neuroinflammatory diseases [J]. J Neural Transm (Vienna). 2018, 125(5): 781–795.

[19] Shaftel SS, Kyrkanides S, et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology [J]. J Clin Invest. 2007, 117 (6): 1595-1604.

[20] S. Monteiro, S. Roque, et al. Brain interference: Revisiting the role of IFNg in the central nervous system [J]. Progress in Neurobiology. 2017.

[21] Sun L, Li Y, et al. Neuroprotection by IFN-γ via astrocyte-secreted IL-6 in acute neuroinflammation [J]. Oncotarget. 2017, 8(25):40065-40078.

[22] Song JH, Lee JW, et al. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice [J]. Molecules. 2013, 18:15788-15803.

[23] Aggarwal BB, Gupta SC, et al. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey [J]. Blood. 2012, 119(3):651-665.

[24] Mubarak Muhammad. Tumor Necrosis Factor Alpha: A Major Cytokine of Brain Neuroinflammation. 2019.

[25] Andrew L. Croxford, Sabine Spath, et al. GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage [J]. Trends in Immunology. 2015, 36(10): 651-662.

?