Your Good Partner in Biology Research

CDCP1蛋白:一種致癌信號(hào)通路的關(guān)鍵樞紐,抗腫瘤藥物新興靶點(diǎn)!

日期:2023-08-25 09:22:05

最近,哈佛醫(yī)學(xué)院的研究者在Nature Communications發(fā)表了一篇題為“The blood proteome of imminent lung cancer diagnosis”的論文。采用高通量蛋白質(zhì)組學(xué)方法,研究人員從吸煙者的血液樣本中篩選出與即將診斷為肺癌的風(fēng)險(xiǎn)相關(guān)的蛋白質(zhì),其中包括CEACAM5、MUC-16、IL6CXCL9、CXCL13和CDCP1 [1]CDCP1是一種新型的腫瘤治療靶點(diǎn),目前有多種針對(duì)它的藥物在開發(fā)中,主要針對(duì)實(shí)體瘤中高表達(dá)CDCP1的腫瘤細(xì)胞。這些藥物能夠抑制腫瘤細(xì)胞的遷移和侵襲,同時(shí)保護(hù)正常細(xì)胞,特別是造血干細(xì)胞。因此,CDCP1作為一種重要的致癌信號(hào)通路的調(diào)節(jié)因子,具有巨大的藥物開發(fā)潛力,有望為腫瘤患者帶來新的治療方案。


1. 什么是CDCP1?

CUB結(jié)構(gòu)域包含蛋白1(CUB-domain containing protein 1,CDCP1)是I類單次跨膜糖蛋白,也被稱CD318、SIMA135、gp140或TRASK。Scherlmostageerm等研究者首次于2001年使用代表性差異分析和cDNA芯片技術(shù)鑒定,報(bào)告了一種新的人類腫瘤相關(guān)基因CDCP1。全長(zhǎng)CDCP1蛋白含有836個(gè)氨基酸,包含29個(gè)氨基酸的氨基端信號(hào)肽、細(xì)胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和胞質(zhì)結(jié)構(gòu)域。CDCP1胞外區(qū)有三個(gè)未知功能的CUB樣結(jié)構(gòu)域,其最有可能參與細(xì)胞黏附或與細(xì)胞外基質(zhì)相互作用。CDCP1可以被蛋白酶(如ADAM9)水解,形成同源二聚,進(jìn)而與Src和PKCδ等蛋白發(fā)生酪氨酸磷酸化反應(yīng),從而啟動(dòng)轉(zhuǎn)移活性(圖1[2-4]。

CDCP1在體內(nèi)多種組織中的干細(xì)胞或前體細(xì)胞檢測(cè)到表達(dá),如造血細(xì)胞干細(xì)胞祖細(xì)胞、神經(jīng)祖細(xì)胞等。最近的研究發(fā)現(xiàn),CDCP1的表達(dá)失調(diào)與多種腫瘤的發(fā)生相關(guān),并且驅(qū)動(dòng)或參與多種惡性腫瘤的遷移及侵襲過程,在腫瘤發(fā)生發(fā)展中扮演極其重要的角色。CDCP1可通過調(diào)節(jié)腫瘤內(nèi)細(xì)胞因子(如IL-2、HLA-B19)活性影響腫瘤免疫反應(yīng),進(jìn)而影響治療效果。CDCP1正成為目前抗腫瘤藥物研發(fā)領(lǐng)域的熱門靶點(diǎn)之一 [5-6]。

CDCP1結(jié)構(gòu)

圖1. CDCP1結(jié)構(gòu) [2]


2. CDCP1在腫瘤中的相關(guān)作用機(jī)制

目前,SFKs、PKCδ與CDCP1的酪氨酸磷酸化相互作用機(jī)制正受到關(guān)注。相關(guān)研究顯示,CDCP1蛋白通過調(diào)控下游絡(luò)氨酸磷酸化信號(hào)通路,如PI3K/Akt、PKC5、SRC和ERK/MAPK等,在促進(jìn)腫瘤侵襲和轉(zhuǎn)移中發(fā)揮重要作用 (圖2[7]。

在前列腺癌細(xì)胞中,CDCP1基因的表達(dá)通常被雄激素抑制,保持相對(duì)較低的水平。然而,在雄激素非依賴型去勢(shì)抵抗性前列腺癌(Castration-resistant prostate cancer,CRPC)中,雄激素剝奪過程導(dǎo)致CDCP1蛋白水平上調(diào),同時(shí)激活了對(duì)應(yīng)的Akt和SRC/MAPK信號(hào)通路,表明CDCP1蛋白的表達(dá)水平變化可能與CRPC的進(jìn)展相關(guān) [8]。此外,CDCP1缺失可調(diào)控CDK5,這種新機(jī)制動(dòng)態(tài)調(diào)節(jié)非貼壁細(xì)胞中的整合素β1(ITGB1),促進(jìn)晚期前列腺癌患者的血管擴(kuò)散 [9]。因此,了解基因轉(zhuǎn)錄激活機(jī)制以及CDCP1蛋白介導(dǎo)的細(xì)胞信號(hào)通路在疾病中的作用,有助于指導(dǎo)抑制CDCP1和開發(fā)前列腺癌創(chuàng)新療法的研究。

在結(jié)腸癌中,CDCP1鑒定為Wnt信號(hào)通路的正調(diào)控因子。CDCP1促進(jìn)Wnt信號(hào)轉(zhuǎn)導(dǎo)的關(guān)鍵調(diào)節(jié)子,β-cateninE-cadherin轉(zhuǎn)運(yùn)到細(xì)胞核 [10]。在三陰性乳腺癌中,PDGF-BB通過激活PDGFRβ,促進(jìn)了ERK1/2信號(hào)通路的激活,并增加了CDCP1蛋白的表達(dá) [11]。在肺癌中,ADAM9通過激活EGFR信號(hào)通路下調(diào)miR-1,從而增強(qiáng)CDCP1的表達(dá),促進(jìn)肺癌的進(jìn)展 [12]。在腎癌中,HIF-2α的過表達(dá)會(huì)促進(jìn)腫瘤異種移植物的生長(zhǎng),并增強(qiáng)CDCP1的表達(dá)和酪氨酸磷酸化,表明了CDCP1是轉(zhuǎn)移性癌癥的生物標(biāo)志物和潛在治療靶標(biāo) [12]。

CDCP1在腫瘤中的相關(guān)作用機(jī)制

圖2. CDCP1在腫瘤中的相關(guān)作用機(jī)制 [7]


3. CDCP1在腫瘤中的作用

3.1 CDCP1和前列腺癌

前列腺癌(Prostate Cancer,PCa)是男性常見腫瘤,雄激素剝奪療法(Androgen Deprivation Therapy,ADT)抑制雄激素的產(chǎn)生或阻斷雄激素受體(Androgen Receptor,AR)信號(hào),在治療晚期前列腺癌和預(yù)防前列腺癌復(fù)發(fā)方面具有療效。然而,大多數(shù)患者會(huì)出現(xiàn)藥物抵抗,最終發(fā)展為雄激素非依賴型去勢(shì)抵抗性前列腺癌(CRPC)。因此,CRPC仍是一種具有臨床挑戰(zhàn)性的晚期癌癥 [14]

據(jù)報(bào)道,CDCP1在AR-陰性CRPC細(xì)胞中高表達(dá),且與BRD4和CBP/p300表達(dá)呈正相關(guān),作為PCa細(xì)胞信號(hào)傳導(dǎo)通路上游的調(diào)控因子;靶向BRD4和CBP/p300可以下調(diào)EGFR、c-Myc、SRC、ERK/p-ERK、Akt/p-Akt等致癌信號(hào)通路標(biāo)志物的水平;BRD4和CBP/p300結(jié)合到CDCP1基因的啟動(dòng)子和增強(qiáng)子區(qū)域,調(diào)控H3K27ac的水平和CDCP1基因的轉(zhuǎn)錄激活;雙重抑制劑NEO2734可以有效地抑制CDCP1基因的表達(dá),抑制AR-陽(yáng)性和AR-陰性CRPC細(xì)胞生長(zhǎng) (圖3[15] 。此外,CDCP1與抑癌基因PTEN的缺失,協(xié)同促進(jìn)了轉(zhuǎn)移性前列腺癌的發(fā)生 [16]。

雙重抑制劑以靶向CDCP1蛋白所介導(dǎo)的雄激素非依賴型去勢(shì)抵抗性前列腺癌CRPC

圖3. 雙重抑制劑以靶向CDCP1蛋白所介導(dǎo)的雄激素非依賴型去勢(shì)抵抗性前列腺癌CRPC [15]

3.2 CDCP1和結(jié)腸癌

CDCP1是一種與結(jié)直腸癌的預(yù)后相關(guān)的分子標(biāo)志物,其高表達(dá)的患者比低表達(dá)的患者具有更短的總生存期和無(wú)病生存期。在體外實(shí)驗(yàn)中,通過基因編輯技術(shù)沉默CDCP1的表達(dá)能夠有效抑制HCT116細(xì)胞的遷移和侵襲能力,說明CDCP1的過度表達(dá)促進(jìn)了癌細(xì)胞的轉(zhuǎn)移和侵襲。此外,通過整合基因組學(xué)分析發(fā)現(xiàn)RHO關(guān)聯(lián)卷曲螺旋結(jié)合蛋白激酶1(ROCK1)是CDCP1調(diào)控遷移和侵襲的重要下游信號(hào)分子 [17]。

3.3 CDCP1和肺癌

肺癌是常見的惡性腫瘤之一,其中非小細(xì)胞肺癌(NSCLC)占肺癌的70%-80%以上。對(duì)于接受EGFR TKI治療的EGFR突變陽(yáng)性NSCLC患者中,研究者發(fā)現(xiàn),CDCP1是影響患者無(wú)進(jìn)展生存期(Progression-Free Survival,PFS)和總生存期(Overall Survival,OS)的獨(dú)立負(fù)面預(yù)后因素 [18-19]。相關(guān)研究發(fā)現(xiàn),臨床標(biāo)本中肺癌患者ADAM9和CDCP1的高水平與高死亡相關(guān)。此外,ADAM9可激活EGFR信號(hào)通路,增強(qiáng)CDCP1的表達(dá),促進(jìn)肺癌 [12, 20]。

3.4 CDCP1和胰腺癌

在胰腺癌中,CDCP1的表達(dá)水平很高。研究表明,AHCC是一種從蕈類植物中提取的活性成分,它可以通過下調(diào)CDCP1的表達(dá),抑制胰腺癌細(xì)胞的惡性進(jìn)展。另一方面,CDCP1可以通過其細(xì)胞外的CUB2結(jié)構(gòu)域與另一個(gè)CDCP1分子結(jié)合,形成同型復(fù)合物。這種復(fù)合物可以激活SFK信號(hào)分子,從而促進(jìn)癌細(xì)胞的遷移。因此,研究人員利用麥芽糖結(jié)合蛋白標(biāo)記的重組CUB2域蛋白(rMBPCUB2),干擾CDCP1之間的結(jié)合,有效地減少了同型復(fù)合物的數(shù)量。這說明,阻斷CDCP1的同型結(jié)合位點(diǎn)是一種潛在的治療CDCP1相關(guān)腫瘤的策略 [21]

3.5 CDCP1和乳腺癌

在乳腺癌中,實(shí)驗(yàn)研究確定了CDCP1是HER2信號(hào)的調(diào)節(jié)劑。當(dāng)HER2和CDCP1同時(shí)過度表達(dá)時(shí),會(huì)增加乳腺癌細(xì)胞的轉(zhuǎn)化、遷移和腫瘤形成能力 [22]。在三陰性乳腺癌(TNBC)中,有研究揭示CDCP1的蛋白水平受到FBXL14的控制。FBXL14是一種泛素連接酶,它可以促進(jìn)CDCP1的泛素化,使其被蛋白酶體降解。這樣,F(xiàn)BXL14就抑制了CDCP1的穩(wěn)定性,從而影響了CDCP1參與的乳腺癌轉(zhuǎn)移相關(guān)的基因表達(dá) [23]。這項(xiàng)研究首次揭示了影響CDCP1穩(wěn)定性的分子機(jī)制,并發(fā)現(xiàn)這種機(jī)制比基因表達(dá)水平更能準(zhǔn)確地預(yù)測(cè)乳腺癌患者的預(yù)后。

3.6 CDCP1和其它癌癥

CDCP1還在其他多種癌癥中有高表達(dá),如喉癌 [24]、宮頸癌 [25]、腎癌 [13]、肝細(xì)胞癌 [26]、慢性髓系白血?。–ML)[27]和急性髓系白血病(AML) [28-29]等。以喉癌為例,一項(xiàng)研究檢測(cè)了喉癌組織和癌旁組織中的MMP-9、CDCP1和NLK的表達(dá)。結(jié)果發(fā)現(xiàn),喉癌組織中這三種蛋白的表達(dá)都高于癌旁組織,尤其是NLK。NLK是一種激酶,它可以調(diào)節(jié)細(xì)胞的信號(hào)傳導(dǎo) [24]。

研究人員用siRNA干擾了喉癌細(xì)胞Hep-2中的NLK表達(dá),發(fā)現(xiàn)這樣可以降低Hep-2細(xì)胞的增殖和侵襲能力,增加Caspase-3的活性。Caspase-3是一種凋亡相關(guān)的酶。同時(shí),干擾NLK表達(dá)也可以降低MMP-9和CDCP1的表達(dá)。這些結(jié)果說明,NLK可能通過影響MMP-9和CDCP1的表達(dá),參與喉癌細(xì)胞的增殖、凋亡和侵襲過程 [24]


4. CDCP1的臨床在研藥物

目前,已有多家國(guó)外公司投入CDCP1藥物的研發(fā)。這些公司包括Chiome Bioscience, Inc.,UCSF Innovation Ventures,Miltenyi Biotec, Inc.,和Heidelberg Pharma Research GmbH等。他們研發(fā)的藥物形式有單抗、抗體藥物綴合物(ADC)和CAR T等。其中,Chiome Bioscience公司開發(fā)了一種新型的抗CDCP1抗體藥物綴合物(h14A043-ATAC),它已經(jīng)進(jìn)入了臨床前階段,并且對(duì)多種實(shí)體癌顯示出了很好的效果。該公司還開發(fā)了一種CDCP1單抗抑制劑(PCDC),也在進(jìn)行臨床前試驗(yàn)。目前,國(guó)內(nèi)使用的CDCP1抗體制劑大多是從國(guó)外進(jìn)口的。因此,我們有必要自主研制CDCP1抗體制劑,以滿足國(guó)內(nèi)在腫瘤發(fā)生發(fā)展、免疫診斷和靶向治療方面對(duì)CDCP1的需求。

為鼎力協(xié)助科研和藥企人員針對(duì)CDCP1在腫瘤等疾病中的臨床應(yīng)用研究,CUSABIO推出CDCP1多個(gè)種屬活性蛋白(CSB-MP884474HUCSB-MP719456MO;CSB-MP4569MOV),助力您在CDCP1機(jī)制方面的研究或其潛在臨床價(jià)值的探索。

CDCP1蛋白

Recombinant Human CUB domain-containing protein 1(CDCP1),partial (Active) (Code: CSB-MP884474HU)

High Purity Validated by SDS-PAGE
CSB-MP884474HU SDS-PAGE

Purity was greater than 95% as determined by SDS-PAGE.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP884474HU

Immobilized Human CDCP1 at 2μg/mL can bind Anti-CDCP1 recombinant antibody (CSB-RA884474MA1HU), the EC50 is 0.2943-0.4429 ng/mL.

Recombinant Mouse CUB domain-containing protein 1(Cdcp1),partial (Active) (Code: CSB-MP719456MO)

High Purity Validated by SDS-PAGE
CSB-MP719456MO SDS-PAGE

Purity was greater than 95% as determined by SDS-PAGE.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP719456MO

Immobilized Mouse Cdcp1 at 2 μg/mL can bind Anti-CDCP1 recombinant antibody (CSB-RA884474MA1HU), the EC50 is 0.6397-0.8369 ng/mL.

Recombinant Macaca fascicularis CUB domain containing protein 1(CDCP1),partial(Active) (Code: CSB-MP4569MOV)

High Purity Validated by SDS-PAGE
CSB-MP4569MOV SDS-PAGE

Purity was greater than 95% as determined by SDS-PAGE.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP4569MOV

Immobilized Macaca fascicularis CDCP1 at 2μg/mL can bind Anti-CDCP1 recombinant antibody (CSB-RA884474MA1HU),the EC50 is 1.861-2.330 ng/mL.


參考文獻(xiàn):

[1] Albanes, Demetrius, et al. "The blood proteome of imminent lung cancer diagnosis." Nature Communications 14.1 (2023).

[2] Wortmann, Andreas, et al. "The cell surface glycoprotein CDCP1 in cancer-insights, opportunities, and challenges." IUBMB life 61.7 ( 2009): 723-730.

[3] Murakami, Yuichi, et al. "AXL/CDCP1/SRC axis confers acquired resistance to osimertinib in lung cancer." Scientific Reports 12.1 (2022): 8983.

[4] Uekita, Takamasa, and Ryuichi Sakai. "Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis." Cancer science 102.11 (2011): 1943-1948.

[5] Qi, Xiao, et al. "CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer." Life Sciences 301 (2022): 120600.

[6] Hooper, John D., et al. "Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen." Oncogene 22.12 (2003): 1783-1794.

[7] Casar, B., et al. "In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling." Oncogene 33.2 (2014): 255-268.

[8] Alajati, Abdullah, et al. "CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo." the Journal of clinical investigation 130.5 (2020): 2435-2450.

[9] Pollan, Sara G., et al. "Regulation of inside-out β1-integrin activation by CDCP1." Oncogene 37.21 (2018): 2817-2836.

[10] He, Yaowu, et al. "CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of β-catenin and E-cadherin." Oncogene 39.1 (2020) : 219-233.

[11] Forte, Luca, et al. "The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer." BMC cancer 18 (2018): 1-11.

[12] Chiu, Kuo-Liang, et al. "ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis." Oncotarget 8.29 (2017). : 47365.

[13] Emerling, Brooke M., et al. "Identification of CDCP1 as a hypoxia-inducible factor 2α (HIF-2α) target gene that is associated with survival in clear cell renal cell carcinoma patients." Proceedings of the National Academy of Sciences 110.9 (2013): 3483-3488.

[14] Chandrasekaran, Balaji, et al. "Antiandrogen-Equipped Histone Deacetylase Inhibitors Selectively Inhibit Androgen Receptor (AR) and AR-Splice Variant (AR-SV) in Castration-Resistant Prostate Cancer (CRPC)." Cancers 15.6 (2023): 1769.

[15] Ji, Donglei, et al. "Targeting CDCP1 gene transcription coactivated by BRD4 and CBP/p300 in castration-resistant prostate cancer." Oncogene 41.23 ( 2022): 3251-3262.

[16] Alajati, A., J. Chen, and A. Alimonti. "CDCP1 initiates tumorigenesis and cooperates with PTEN loss to promote senescence evasion and prostate cancer progression." Annals of Oncology 28 (2017): v1.

[17] Chou, Chiang-Ting, et al. "Prognostic significance of CDCP1 expression in colorectal cancer and effect of its inhibition on invasion and migration." Annals of surgical oncology 22 (2015): 4335-4343.

[18] Karachaliou, Niki, et al. "Common co-activation of AXL and CDCP1 in EGFR-mutation-positive non-small cell lung cancer associated with poor prognosis. " EBioMedicine 29 (2018): 112-127.

[19] Jiang, Tao, et al. "Radiotherapy plus EGFR TKIs in non-small cell lung cancer patients with brain metastases: an update meta- analysis." Cancer Medicine 5.6 (2016): 1055-1065.

[20] Chiu, Kuo-Liang, et al. "ADAM9 enhances CDCP1 protein expression by suppressing miR-218 for lung tumor metastasis." scientific reports 5.1 (2015). 16426.

[21] Kuhara, Keisuke, et al. "CUB domain-containing protein 1 (CDCP1) is down-regulated by active hexose-correlated compound in human pancreatic cancer cells." Anticancer Research 38.11 (2018): 6107-6111.

[22] Alajati, Abdullah, et al. "Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer." Cell reports 11.4 (2015): 564-576.

[23] Cui, Yan-Hong, et al. "FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation." Oncogene 37.43 (2018): 5794-5809.

[24] Shen, N., et al. "Effect of NLK on the proliferation and invasion of laryngeal carcinoma cells by regulating CDCP1." European Review for Medical & Pharmacological Sciences 23.14 (2019).

[25] Huang, Lijun, et al. "CUB domain-containing protein-1 promotes proliferation, migration and invasion in cervical cancer cells." Cancer Management and Research (2020): 3759-3769.

[26] Cao, Manqing, et al. "HIF-2α regulates CDCP1 to promote PKCδ-mediated migration in hepatocellular carcinoma." Tumor Biology 37 (2016): 1651-1662.

[27] Gioia, Romain, et al. "Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells." Blood, The Journal of the American Society of Hematology 118.8 (2011): 2211-2221.

[28] Heitmann, Jonas S., et al. "Identification of CD318 (CDCP1) as novel prognostic marker in AML." Annals of Hematology 99 (2020): 477-486.

[29] Ebian, Huda F., et al. "Evaluation of CDCP1 (CD318) and endoglin (CD105) expression as prognostic markers in acute myeloid leukemia." Cancer Biomarkers 34.2 (2022): 285-296.