Your Good Partner in Biology Research

IL2RA(CD25):CD4+CD25+Tregs亞群最特異性標志物,抑制效應(yīng)T細胞,免疫領(lǐng)域熱點分子!

日期:2023-08-17 13:27:28

2023年8月8日,信達生物在Nature Cancer期刊發(fā)表了題為“IL-2Rα-biased agonist enhances antitumor immunity by invigorating tumor-infiltrating CD25+CD8+ T cells”文章 [1]。該報道揭示了抗PD-1/IL-2雙特異性抗體融合蛋白(IBI363)的早期臨床前核心機制研究結(jié)果。數(shù)年來,隨著對T細胞亞群的不斷研究,一群能夠主動維持免疫平衡和外周免疫耐受的細胞被發(fā)現(xiàn),定義為調(diào)節(jié)性細胞(Tregs)。T細胞具有異質(zhì)性,包括CD4+CD25+Tregs,CD8+CD25+Tregs,CD8+CD28+Tregs細胞等,其中CD4+CD25+Tregs是目前研究最多的亞群之一。

IL2通過IL2受體αβγ三聚體誘導(dǎo)激活CD4+CD25+Tregs。CD4+CD25+Tregs細胞是一種負向免疫調(diào)控細胞,在抑制自身免疫性疾病的進展、控制潛在有害的炎性反應(yīng)及維持自身免疫穩(wěn)態(tài)等方面起了關(guān)鍵性的作用。通過調(diào)節(jié)CD4+CD25+Tregs細胞數(shù)量,影響效應(yīng)T細胞功能,可治療多種免疫疾病或腫瘤。目前,IL2RA(CD25)作為該亞群的最特異性標志,成為免疫調(diào)節(jié)研究領(lǐng)域的熱點分子!


1. 什么是CD4+CD25+調(diào)節(jié)性T細胞?

CD4+CD25+調(diào)節(jié)性T細胞(CD4+CD25+Tregs))是一類特定亞群的CD4+T細胞。它們特征性的表達CD25分子,即IL-2受體α鏈(IL-2RA),屬于職業(yè)抑制性T細胞。1995年,Sakaguchi等人首次報道在正常人和小鼠外周血及脾臟組織的CD4+T淋巴細胞中,有一細胞亞群持續(xù)高表達CD25分子,進而首次分離出CD4+CD25+T細胞。目前該亞群特異性的標志分子還包括FOXP3,其次CTLA-4、GXTR等,這些標志有助于將CD4+CD25+Tregs從活性T細胞、效應(yīng)性T細胞和記憶性T細胞中區(qū)分出來。CD4+CD25+Tregs具有兩大核心功能特性:一是免疫無能性,即不響應(yīng)IL-2等刺激;二是免疫抑制性,可以抑制效應(yīng)T細胞增殖,并影響其細胞因子產(chǎn)生(圖1[2-6]

CD25參與Tregs調(diào)節(jié)性T細胞的發(fā)育和免疫調(diào)節(jié)

圖1. CD25參與Tregs調(diào)節(jié)性T細胞的發(fā)育和免疫調(diào)節(jié) [2]


2. 什么是IL2Rα/IL2RA(CD25)?

IL2Rα/IL2RA(又稱為CD25)是白細胞介素2(IL-2)受體的α鏈,其胞漿區(qū)域較短,屬于一種低親和性的白介素-2(IL-2)受體。IL-2RA因為可以持續(xù)、高水平的表達在靜止以及活化的調(diào)節(jié)性T細胞上,所以是目前最常用的調(diào)節(jié)性T細胞標記分子。IL-2Rβ(CD122)和IL-2Rγ(CD132)的二聚體形式是IL-2信號通路的必須結(jié)構(gòu),但僅有IL-2Rβ和IL-2Rγ的二聚體形式存在時,IL-2無法有效的通過IL-2受體復(fù)合物信號通路調(diào)節(jié)T細胞增生。因此,IL-2Rα可以與IL-2受體的β鏈(CD122)和γ鏈(CD132)形成復(fù)合物,從而增強IL-2與受體的親和力(圖2[7-11]。

IL2RA(CD25)主要表達于CD4+細胞膜表面,參與調(diào)節(jié)性CD4+T細胞在IL-2的生理低水平下進行分化和增殖。近些年,CD4+CD25+Tregs細胞亞型,因其具有獨特的作用方式和功能特征引起了國內(nèi)外研究者的共同關(guān)注。在CD4+CD25+Tregs細胞中,CD25作為IL-2受體的關(guān)鍵組成部分,使Treg細胞能夠響應(yīng)IL-2信號,發(fā)揮免疫調(diào)控功能。Treg細胞通過抗原非特異性機制來抑制效應(yīng)T細胞的激活。總之,IL-2RA(CD25)作為Treg細胞的重要標志,不僅標識了這個特定的細胞亞群,還使CD4+CD25+Tregs能夠發(fā)揮關(guān)鍵的免疫調(diào)控功能 [7-11]。

IL-2與IL-2α、β和γ鏈受體復(fù)合物結(jié)構(gòu)示意圖

圖2. IL-2與IL-2α、β和γ鏈受體復(fù)合物結(jié)構(gòu)示意圖 [11]


3. IL2RA相關(guān)的調(diào)控機制

3.1 IL2/IL2Rα信號通路機制

IL2Rα作為IL-2異源三聚體受體復(fù)合物的α鏈,與IL-2受體β鏈、γ鏈形成IL-2受體復(fù)合物。IL-2受體復(fù)合物本身不具有激活信號通路能力,是通過與非受體型蛋白酪氨酸激酶偶聯(lián),激活下游信號傳導(dǎo)通路。主要通過以下三條信號通路傳導(dǎo) (圖3[12-14]

i) Jak-STAT途徑。激酶被激活,IL-2R胞內(nèi)段Jak蛋白結(jié)合部分發(fā)生磷酸化,啟動STAT因子轉(zhuǎn)入細胞核中,使靶基因發(fā)揮調(diào)控細胞增殖與凋亡的作用。

ii) MAP激酶途徑。激酶和Syk激酶活化后,使IL-2R胞內(nèi)段發(fā)生磷酸化,引發(fā)Shc蛋白和Grb-2蛋白級聯(lián)激活,使具有絲氨酸/蘇氨酸蛋白激酶活性的Raf-1蛋白啟動MAP激酶途徑;另外,在Jak激酶活化后還可以激動Pyk2激酶,從而啟動MAP激酶途徑;最終調(diào)節(jié)細胞周期蛋白依賴激酶對特定底物發(fā)揮作用,促進細胞增殖。

iii) 磷酸酰肌醇-3-激酶PI3K途徑。該過程需要Jak激酶、Pyk2激酶的參與,lck激酶作為啟動因子,磷酸酰肌醇-3-激酶與Shc蛋白結(jié)合后刺激致癌基因Aktp70S6k表達,參與調(diào)控細胞凋亡及增殖活動。

IL-2/IL-2Rα信號通路機制

圖3. IL-2/IL-2Rα信號通路機制 [12]

3.2 CD4+CD25+Tregs的免疫負調(diào)節(jié)機制

IL2RA(CD25)作為Treg細胞的重要標志,不僅標識了CD4+CD25+Tregs這個特定的細胞亞群,還使其能夠發(fā)揮關(guān)鍵的免疫調(diào)控功能。CD25分子在CD4+CD25+ Treg上呈高表達狀態(tài),能夠與效應(yīng)細胞競爭性結(jié)合IL-2,使效應(yīng)細胞無法得到生長信號而不能增殖。CD4+CD25+Tregs細胞的主要功能特性是免疫無能性和免疫抑制性。免疫無能性是指在抗原刺激下,Treg呈現(xiàn)無反應(yīng)狀態(tài),即使在高濃度IL-2單獨刺激下也呈無應(yīng)答狀態(tài)。免疫抑制性是指在T細胞受體(TCR)介導(dǎo)的信號刺激下,調(diào)節(jié)性T細胞可活化、增殖成為有抑制作用的T淋巴細胞 [13-14]。

近年來體內(nèi)外研究表明,除了IL-2RA(CD25),細胞因子(IL-10TGF-β、IL-2IL-6)和某些細胞膜分子(CTLA-4、GITR)也在CD4+CD25+Tregs功能的發(fā)揮中起了一定的作用 (圖4[15-18]。目前對CD4+CD25+Tregs的效應(yīng)機制還不十分明確。最初的體外研究明確支持CD4+CD25+Tregs是通過與其他細胞直接接觸發(fā)揮抑制作用這一觀點。因此,細胞-細胞互相接觸是該亞型發(fā)揮作用的先決條件。

IL-10和TGF-β參與CD4+CD25+Treg(iTREG)的免疫調(diào)節(jié)作用機制

圖4. IL-10和TGF-β參與CD4+CD25+Treg(iTREG)的免疫調(diào)節(jié)作用機制 [16]


4. CD4+CD25+Tregs在多種疾病中的作用

IL2RA,即DC25,主要表達于CD4+CD25+Tregs細胞表面。CD4+CD25+Tregs作為新近發(fā)現(xiàn)的,一個具有獨特免疫調(diào)節(jié)作用的T細胞亞群,其在維持機體免疫耐受和調(diào)節(jié)免疫反應(yīng)中起著重要作用!隨著研究的深入,該亞型逐漸成為最近幾年來研究的熱點。

4.1 CD4+CD25+Tregs與自身免疫性疾病

目前已有大量的證據(jù)表明CD4+CD25+Tregs細胞數(shù)量和或功能異常是打破自身免疫耐受與誘發(fā)許多自身免疫性疾病的重要因素。與正常人相比I型糖尿病患者的外周血中CD4+CD25+Tregs細胞數(shù)量均明顯降低,并且與疾病的嚴重程度有關(guān)。除了數(shù)量缺少外,I型糖尿病患者的CD4+CD25+Tregs細胞的免疫抑制功能也降低。在某些情況下,這些T細胞雖然數(shù)量沒有明顯變化,但對抑制T細胞增殖的作用減少,同時分泌IFN-γ增加、分泌IL-10減少。這可能導(dǎo)致CD4+CD25+T細胞的抑制功能減弱,影響對胰島的保護 [19-20]。

在系統(tǒng)性紅斑狼瘡SLE中,研究發(fā)現(xiàn)患者外周血CD4+CD25high T細胞與CD4+CD25int T細胞的比率降低,說明SLE存在免疫失衡,主要表現(xiàn)為抑制功能細胞下降,而效應(yīng)性T細胞升高。通過增加CD4+CD25high T細胞的數(shù)量和功能或抑制效應(yīng)T細胞可作為SLE治療靶點 [21]。在另外一些自身免疫性疾病中,如多發(fā)性硬化病 [22]、類風(fēng)濕關(guān)節(jié)炎 [23]、銀屑病 [24]、Wegner’s肉芽腫病 [25]和重癥肌無力 [26]等,雖然CD4+CD25+Tregs細胞的數(shù)量正常,但其免疫抑制活性是下降的或者缺乏的。

4.2 CD4+CD25+Tregs與移植物抗宿主病

CD4+CD25+Tregs在移植物抗宿主?。℅VHD)中發(fā)揮重要作用。GVHD是一種免疫性疾病,常見于異種基因造血干細胞移植。研究表明,CD4+CD25+Tregs可以調(diào)節(jié)GVHD的發(fā)生。供者淋巴細胞中去除CD4+CD25+T細胞或受體中去除CD25+T細胞會增加GVHD的風(fēng)險,而輸注新鮮的供體CD4+CD25+T細胞可以減輕GVHD。其中,CD4+CD25+CD62L+Treg對急性GVHD的調(diào)節(jié)作用顯著。不同的CD4+CD25+Tregs亞群在抑制GVHD中的作用有所不同。這些發(fā)現(xiàn)對于GVHD的臨床預(yù)防和治療提供了有益的信息 [27-28]。

4.3 CD4+CD25+Tregs與腫瘤

許多腫瘤抗原為自身抗原,CD4+CD25+Tregs能抑制T細胞對外來和自體抗原的免疫應(yīng)答,因而在維持對自身成分耐受的同時,也會阻止機體對腫瘤細胞的免疫應(yīng)答,從而導(dǎo)致了腫瘤的免疫逃逸 [29-30]。在急性髓系白血?。╝cute myeloid leukemia,AML)中,CD25+AML患者的白血病細胞高表達髓系抗原CD11b、CD36;淋系抗原CD4、CD22;骨髓干細胞抗原CD123。而低表達漿細胞抗原CD38及NK細胞抗原CD56 [31-32];在卵巢癌中,腫瘤細胞分泌CCL22,招募CD4+CD25+Tregs至腫瘤部位,導(dǎo)致CD4+CD25+Tregs在癌腫組織中聚集,而在正常的卵巢組織中幾乎不能看到CD4+CD25+Tregs。對于腫瘤而言,去除這群細胞可能有助于誘發(fā)有效的腫瘤免疫 [33-34]。

4.4 CD4+CD25+Tregs與其它疾病

CD4+CD25+Tregs的抑制作用使得幽門螺桿菌無法被免疫系統(tǒng)清除而長期存在,對胃、十二指腸造成了損害,導(dǎo)致胃、十二指腸潰瘍甚至癌變 [35];IL2RA基因的rs3118470位點的基因多態(tài)性與斑秀的家族史以及病情嚴重程度存在著一定的相關(guān)性 [36];在妊娠小鼠的脾臟、回腸淋巴結(jié)以及外周血中,CD4+CD25+Tregs的比例明顯高于非妊娠對照組小鼠。如果將抗CD25單抗克隆體輸注給小鼠,則會導(dǎo)致其流產(chǎn)。說明CD4+CD25+Tregs在誘導(dǎo)母胎免疫耐受方面起著重要作用 [37]

在大鼠腦缺血再灌注CD4+CD25+Tregs細胞輸注移植治療模型中,CD4+CD25+Tregs細胞可以減小大腦中動脈阻塞缺血再灌注(MCAO/R)大鼠腦梗死體積,降低缺血后神經(jīng)功能缺損,提高神經(jīng)功能恢復(fù)。此外,CD4+CD25+Tregs細胞還可降低缺血對寡突膠質(zhì)細胞和軸突造成的損害,減輕腦缺血后白質(zhì)損傷 [38]。


5. IL2RA的臨床研究前景

目前,有多家機構(gòu)在研究靶向IL-2RA(CD25)的藥物,包括三生國健藥業(yè)(上海)股份有限公司、信達生物、Ligand Pharmaceuticals, Inc.、Eisai Co., Ltd.和Novartis Pharma AG等。三種靶向CD25/IL-2RA的藥物已經(jīng)獲得批準上市,分別是Daclizumab達克珠單抗和Basiliximab巴利昔單抗(均用于腎移植排斥反應(yīng))、Denileukin Diftitox地尼白介素2(用于外周T細胞淋巴瘤和轉(zhuǎn)移性黑色素瘤)。此外,還有一些藥物正在進行臨床試驗,如Inolimomab伊諾莫單抗已處于批準上市階段,用于移植物抗宿主病GVHD。CD4+CD25+Tregs作為一個具有免疫調(diào)節(jié)作用的T淋巴細胞亞群,對它的研究正步入到一個新階段!因此,對Treg細胞最特異性標志IL-2RA(CD25)作用的深入研究將有助于對機體免疫調(diào)節(jié)機制的了解,最終為相關(guān)疾病的治療開辟新的免疫治療途徑。

為鼎力協(xié)助科研和藥企人員針對IL-2RA(CD25)在多種免疫疾病和腫瘤中的臨床應(yīng)用研究,CUSABIO推出IL-2RA(CD25)活性蛋白(Code: CSB-MP011649HU3),助力您在IL-2RA(CD25)機制方面的研究或其潛在臨床價值的探索。

IL-2RA(CD25)蛋白

Recombinant Human Interleukin-2 receptor subunit alpha(IL2RA),partial (Active)(Code: CSB-MP011649HU3)

High Purity Validated
by SDS-PAGE
CSB-MP011649HU3 SDS-PAGE

Purity was greater than 95% as determined by SDS-PAGE.(Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP011649HU3

Immobilized Human IL2RA at 2μg/mL can bind Anti-IL2RA recombinant antibody (CSB-RA011649MA1HU),the EC50 is 2.463-3.353 ng/mL.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP011649HU3

Immobilized Human IL2RA at 2μg/mL can bind Human IL2 (CSB-MP011629HU),the EC50 is 1.693-2.039 ng/mL.


參考文獻:

[1] Wu, W., Chia, T., Lu, J. et al. IL-2Rα-biased agonist enhances antitumor immunity by invigorating tumor-infiltrating CD25+CD8+ T cells. Nat Cancer ( 2023). https://doi.org/10.1038/s43018-023-00612-0

[2] Dhawan, Manish, et al. "Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID." Vaccines 11.3 (2023): 699.

[3] Sakaguchi, Shimon, et al. "Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases." Journal of immunology (Baltimore, Md.: 1950) 155.3 (1995): 1151-1164. 1151-1164.

[4] Maes, Michael. T cell activation via the CD40 ligand and transferrin receptor and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. T cell activation via the CD40 ligand and transferrin receptor and deficits in T regulatory cells are associated with major depressive disorder and severity of depression.

[5] Walker, Lucy SK. "CD4+ CD25+ Treg: divide and rule?." Immunology 111.2 (2004): 129-137.

[6] Wan, Yuling, et al. "Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia." BMC cancer 20 (2020): 1-10.

[7] de Goër de Herve, Marie-Ghislaine, et al. "CD25 appears non essential for human peripheral Treg maintenance in vivo." PloS one 5.7 (2010): e11784.

[8] Spangler, Jamie B., et al. "Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms." Immunity 42.5 (2015): 815-825.

[9] Hsieh, Elena WY, and Joseph D. Hernandez. "Clean up by aisle 2: roles for IL-2 receptors in host defense and tolerance." Current Opinion in Immunology 72 ( 2021): 298-308.

[10] Ye, Congxiu, David Brand, and Song G. Zheng. "Targeting IL-2: an unexpected effect in treating immunological diseases." Signal transduction and targeted therapy 3.1 (2018): 2.

[11] Wang, Xinquan, Mathias Rickert, and K. Christopher Garcia. "Structure of the Quaternary Complex of Interleukin-2 with Its α, ß, and γc Receptors." Science 310.5751 (2005): 1159-1163.

[12] Amaria, Rodabe N., et al. "Update on use of aldesleukin for treatment of high-risk metastatic melanoma." ImmunoTargets and therapy (2015): 79-89.

[13] Tilley, Jefferson W., et al. "Identification of a small molecule inhibitor of the IL-2/IL-2Rα receptor interaction which binds to IL-2." Journal of the American Chemical Society 119.32 (1997): 7589-7590.

[14] Zhang, Bo, et al. "Proximity-enabled covalent binding of IL-2 to IL-2Rα selectively activates regulatory T cells and suppresses autoimmunity." Signal Transduction and Targeted Therapy 8.1 (2023): 28.

[15] Shatrova, Alla N., et al. "Time-dependent regulation of IL-2R α-chain (CD25) expression by TCR signal strength and IL-2-induced STAT5 signaling in activated human blood T lymphocytes." PLoS One 11.12 (2016): e0167215.

[16] Horwitz, David A et al. "Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. " Trends in immunology vol. 29, 9 (2008): 429-35. doi:10.1016/j.it.2008.06.005

[17] Nasiri, Mahboobeh, and Zarnegar Rasti. "CTLA-4 and IL-6 gene polymorphisms: risk factors for recurrent pregnancy loss." human immunology 77.12 (2016). : 1271-1274.

[18] Ware, Michael Brandon, et al. "Dual IL-6 and CTLA-4 blockade regresses pancreatic tumors in a T cell-and CXCR3-dependent manner." JCI insight 8.8 (2023).

[19] Peng, Yujia, et al. "CD25: A potential tumor therapeutic target." International Journal of Cancer 152.7 (2023): 1290-1303.

[20] Qureshi, Farhan M., et al. "Immunotherapy With Low-Dose IL-2/CD25 Prevents β-Cell Dysfunction and Dysglycemia in Prediabetic NOD Mice." Diabetes 72.6 (2023): 769-780.

[21] Eissa, Amal H., et al. "Protective role of T regulatory (Treg) cells in systemic lupus erythematosus patients with nephritis." The Egyptian Rheumatologist 45.1 (2023): 61-65.

[22] Pfender, Nikolai, and Roland Martin. "Daclizumab (anti-CD25) in multiple sclerosis." Experimental neurology 262 (2014): 44-51.

[23] Lawson, C. A., et al. "Early rheumatoid arthritis is associated with a deficit in the CD4+ CD25 high regulatory T cell population in peripheral blood." Rheumatology 45.10 (2006): 1210-1217.

[24] Mrowietz, Ulrich, Kejian Zhu, and Enno Christophers. "Treatment of severe psoriasis with anti-CD25 monoclonal antibodies. "Archives of Dermatology 136.5 (2000): 675-676.

[25] Abdulahad, Wayel H., et al. "Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission." Arthritis & Rheumatism 56.6 (2007): 2080-2091.

[26] Zhang, Min, et al. "Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis." Journal of Molecular Neuroscience 50 (2013): 317-323.

[27] Chen, Alex, et al. "NEO-TRA1: A CD25-Targeted De Novo non-Alpha Agonist of the IL-2 Receptor Selectively Expands Regulatory T Cells." Blood 140. Supplement 1 (2022): 1652-1653.

[28] Schneider, Jessica, et al. "Healthy-like CD4+ regulatory and CD4+ conventional T-cell receptor repertoires predict protection from GVHD following donor lymphocyte infusion." International Journal of Molecular Sciences 23.18 (2022): 10914.

[29] Rech, Andrew J., and Robert H. Vonderheide. "Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells." Annals of the New York Academy of Sciences 1174.1 (2009): 99-106.

[30] Li, Hui, et al. "CD 4+ CD 25+ Regulatory T Cells Decreased the Antitumor Activity of Cytokine-Induced Killer (CIK) Cells of Lung Cancer Patients." Journal of clinical immunology 27 (2007): 317-326.

[31] Gönen, Mithat, et al. "CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial , E1900." Blood, The Journal of the American Society of Hematology 120.11 (2012): 2297-2306.

[32] Nakase, Kazunori, et al. "CD22 expression in acute myeloid leukemia: close correlation with interleukin-2 receptor α-chain (CD25) expression and poor prognosis." Leukemia & Lymphoma 63.9 (2022): 2251-2253.

[33] Woo, Edward Y., et al. "Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer." Cancer research 61.12 (2001): 4766-4772.

[34] deLeeuw, Ronald J., et al. "CD25 identifies a subset of CD4+ FoxP3- TIL that are exhausted yet prognostically favorable in human ovarian cancer." Cancer immunology research 3.3 (2015): 245-253.

[35] Stuller, Kathleen A., et al. "CD25+ T cells induce Helicobacter pylori-specific CD25- T-cell anergy but are not required to maintain persistent hyporesponsiveness." European journal of immunology 38.12 (2008): 3426-3435.

[36] Miao, Y., et al. "Association analysis of the IL2RA gene with alopecia areata in a Chinese population." Dermatology 227.4 (2014): 299-304.

[37] Dimova, Tanya, et al. "Maternal Foxp3 expressing CD4+ CD25+ and CD4+ CD25- regulatory T-cell populations are enriched in human early normal pregnancy decidua: A phenotypic study of paired decidual and peripheral blood samples." American journal of reproductive immunology 66 (2011): 44-56.

[38] Li, Ting-ting, et al. "Effect and Mechanism of Sodium Butyrate on Neuronal Recovery and Prognosis in Diabetic Stroke." Journal of Neuroimmune Pharmacology (2023): 1-17.

特別關(guān)注