Your Good Partner in Biology Research

肌球蛋白調(diào)節(jié)輕鏈(MYL12A和MYL12B):CD69的新功能配體,心臟、腫瘤等多疾病研究潛力靶點(diǎn)?

日期:2024-01-26 09:48:47

肌球蛋白調(diào)節(jié)輕鏈(MLCs)是肌動蛋白II的重要組成部分,在肌肉收縮運(yùn)動、細(xì)胞分裂等多種生命活動中發(fā)揮重要作用。近年來,研究發(fā)現(xiàn)MLCs存在多種亞型,包括MYL9,MYL12AMYL12B,且具有高度同源性。其中,MYL12A和MYL12B與肌動蛋白重鏈結(jié)合形成肌動蛋白復(fù)合物,共同參與調(diào)控細(xì)胞運(yùn)動等過程。此外,它們的磷酸化狀態(tài)可影響肌動蛋白復(fù)合物的活性,從而調(diào)節(jié)肌肉收縮強(qiáng)度、細(xì)胞運(yùn)動速度等。新近研究發(fā)現(xiàn),MYL12A和MYL12B在多種疾病中扮演重要角色,其磷酸化水平與心臟疾?。╡g.心肌損傷、心肌肥厚)和癌癥相關(guān)。因此,MYL12A和MYL12B有望作為重要的生物學(xué)標(biāo)志物,成為心臟、腫瘤等多種疾病的研究潛力靶點(diǎn)!


1. 什么是肌球蛋白調(diào)節(jié)輕鏈(Myosin Regulatory Light Chain,MRLC)?

肌球蛋白包括多個(gè)組成部分,其中包括肌球蛋白重鏈(Myosin Heavy Chain)和肌球蛋白輕鏈(Myosin Light Chains)(點(diǎn)擊查看什么是肌球蛋白家族?)。肌球蛋白輕鏈又分為基礎(chǔ)性MLC(MLC I)和調(diào)節(jié)性MLC(MLC II)或(Myosin regulatory light chain,MRLC),其中MHC是運(yùn)動域,而MLC I起到穩(wěn)定MHC結(jié)構(gòu)的作用,MLC II主要調(diào)節(jié)肌球蛋白的活性。根據(jù)MRLC的氨基酸序列,可以將其分為兩大類:I類MRLC是肌肉中主要存在的RLC,包括MLC1、MLC2、MLC3、MYL4,MYL5, MYL6, MYL7等。II類MRLC在非肌肉細(xì)胞中也存在,包括MYL9、MYL12A、MYL12B等。I類和II類的結(jié)構(gòu)相似,但其磷酸化位點(diǎn)不同,前者主要在Ser19位點(diǎn)被磷酸化,而后者在Ser17位點(diǎn)被磷酸化 [1-4]。


2. MYL12A和MYL12B是什么?

肌球蛋白調(diào)節(jié)輕鏈12A(MYL12A,別稱:MLCB;MRLC3;RLC)和肌球蛋白調(diào)節(jié)輕鏈12B(MYL12B,別稱: MRLC2;MYLC2B;MLC2;MLC-2A;MLC-2),屬于調(diào)節(jié)性MLC(MLC II)。肌球蛋白調(diào)節(jié)輕鏈與肌球蛋白重鏈的頭部區(qū)域結(jié)合,并通過磷酸化調(diào)節(jié)肌球蛋白的活性。不管肌球蛋白的來源如何,每個(gè)類別都具有N端運(yùn)動域、"頸部"杠桿臂、C末端尾巴。N端運(yùn)動域的主要功能是與肌動蛋白分子結(jié)合,形成特定的結(jié)構(gòu)。杠桿臂則由1到6個(gè)異亮氨酸-谷胺酷胺(isoleucine-glutamine,IQ)基序組成,通過與鈣調(diào)蛋白的結(jié)合,引起運(yùn)動域的構(gòu)象變化,實(shí)現(xiàn)功能的放大。相比之下,C末端尾巴呈現(xiàn)出最大的多樣性,廣泛參與不同蛋白質(zhì)之間的相互作用,充當(dāng)重要的調(diào)控?zé)狳c(diǎn) [5-7]圖1)。

MYL12A和MYL12B是兩種相似的調(diào)節(jié)輕鏈,盡管它們的氨基酸序列相似,但它們的表達(dá)和功能略有不同。MYL12A主要在平滑肌中表達(dá),而MYL12B則廣泛分布在多種組織中,包括骨骼肌 [7-11]。此外,它們的ATP酶活性也不同,MYL12A的活性較低,導(dǎo)致肌肉收縮較慢,而MYL12B的活性較高,使肌肉收縮速度更快 [8-12]。研究表明MYL12B是絲氨酸/蘇氨酸激酶的底物,在MAPK激活下發(fā)揮關(guān)鍵作用,參與肌肉收縮和非肌肉細(xì)胞中肌動蛋白(actin)纖維化等生物學(xué)過程 [12-15]。

肌動蛋白II結(jié)構(gòu)

圖1. 肌動蛋白II結(jié)構(gòu) [7]


3. MYL12A和MYL12B相關(guān)的配體是什么?

最新的研究發(fā)現(xiàn),肌球蛋白輕鏈MYL12(MYL12A、MYL12B)和MYL9是CD69的新功能配體。在卵清蛋Ovalbumin(OVA)和屋塵螨誘導(dǎo)的小鼠哮喘模型中,阻斷CD69-MYL9/12相互作用可改善過敏性氣道炎癥。氣道炎癥時(shí),MYL9/12蛋白主要在血管腔表面被檢測到,在血管內(nèi)也以網(wǎng)狀結(jié)構(gòu)存在。特異性抗體阻斷CD69與MYL9/12之間的相互作用,導(dǎo)致白細(xì)胞浸潤減少,氣道炎癥改善,這表明MYL9/12將表達(dá)CD69的白細(xì)胞募集到炎性組織中起重要作用。此外,對嗜酸性粒細(xì)胞慢性鼻竇炎(Chronic Rhinosinusitis,CRS)患者鼻息肉的分析顯示,MYL9/12表達(dá)在炎性病變中增加。該研究將MYL12A、MYL12B、MYL9確定為CD69的先前未知的功能性配體,其CD69-MYL9/12相互作用是活化的CD69+T細(xì)胞募集到炎癥組織的關(guān)鍵事件,可能是難治性氣道炎性疾病的治療靶點(diǎn) [16-18]。


4. 肌球蛋白輕鏈MYL12A和MYL12B相關(guān)的調(diào)控機(jī)制

肌球蛋白功能的發(fā)揮主要與肌球蛋白輕鏈的磷酸化和去磷酸化有關(guān)。肌球蛋白輕鏈磷酸化主要受兩種激酶系統(tǒng)的調(diào)節(jié),即肌球蛋白輕鏈激酶(myosin light chain kinase,MLCK)系統(tǒng)和Rho激酶(rhokinase,ROCK)系統(tǒng)?,F(xiàn)有的研究表明,細(xì)胞內(nèi)多條信號通路通過調(diào)節(jié)MYL12A和MYL12B的磷酸化和去磷酸化來調(diào)節(jié)細(xì)胞骨架的重塑和細(xì)胞的移動,但目前對其作用機(jī)制的認(rèn)識仍十分有限,有待進(jìn)一步探索。這里簡單闡明肌球蛋白輕鏈激酶(myosin light chain kinase,MLCK)系統(tǒng)和Rho激酶(rhokinase,ROCK)系統(tǒng)這兩個(gè)重要的相關(guān)機(jī)制 [19-23]。

4.1 肌球蛋白輕鏈激酶系統(tǒng)(MLCK)

MLCK是肌球蛋白輕鏈磷酸化的重要調(diào)節(jié)蛋白,由4種不同的激酶MLCK1/sm MLCK,MLCK2,MLCK3和MLCK4組成。MLCK是鈣依賴性蛋白激酶,當(dāng)細(xì)胞內(nèi)Ca2+濃度升高,Ca2+與鈣調(diào)蛋白結(jié)合,MLCK激活,使MLC II的Ser19和Thr18發(fā)生磷酸化,導(dǎo)致肌球蛋白頭部的ATP酶激活,該ATP酶水解ATP,引發(fā)肌動蛋白和肌球蛋白相互作用,從而調(diào)節(jié)肌球蛋白參與的諸多生物學(xué)功能。另外,MLCK對肌球蛋白輕鏈的磷酸化存在非鈣依賴性。有實(shí)驗(yàn)證明,高濃度的MLCK在無Ca2+/鈣調(diào)蛋白存在的情況下,也能使MLC磷酸化,其原因與高濃度的MLCK自動磷酸化有關(guān)。但MLCK對肌球蛋白輕鏈的依賴性磷酸化是主要的調(diào)節(jié)途徑(圖2[22]。

肌球蛋白輕鏈激酶系統(tǒng)(MLCK)

圖2. 肌球蛋白輕鏈激酶系統(tǒng)(MLCK)[22]

4.2 Rho激酶系統(tǒng)

ROCK屬于絲氨酸/蘇氨酸蛋白激酶。在哺乳動物細(xì)胞中,ROCK包括2種亞型ROCKIROCKII。Rho是Rho激酶的上游激活蛋白,是Ras超家族成員之一,因具有GTP酶活性,又稱為Rho GTP酶(如 RhoA,Racl和Cde42)。ROCK接受Rho傳遞的活化信號,發(fā)生多個(gè)氨基酸位點(diǎn)的磷酸化而激活,并介導(dǎo)其下游一系列磷酸化/脫磷酸化反應(yīng)。肌球蛋白磷酸酶是其活化的底物,它接受Rho/Rho激酶的活化信號而使調(diào)節(jié)亞基發(fā)生磷酸化,最終導(dǎo)致自身失活,失活的肌球蛋白磷酸酶不能將肌球蛋白輕鏈MLC脫磷酸化,使得細(xì)胞質(zhì)內(nèi)MLC磷酸化水平增加,促進(jìn)肌動蛋白和肌球蛋白相互作用(圖3[23]。

Rho激酶系統(tǒng)

圖3. Rho激酶系統(tǒng) [23]


5. MYL12A和MYL12B在疾病中的研究

肌球蛋白作為細(xì)胞骨架蛋白,通過對其輕鏈磷酸化和去磷酸化的調(diào)節(jié),參與細(xì)胞多種功能活動,并與多種疾病的發(fā)生發(fā)展密切相關(guān)。然而,目前關(guān)于MYL12A和MYL12B在疾病中的研究報(bào)道有限,一些研究表明MYL12A和MYL12B在心臟疾病、癌癥、腸道屏障功能、缺血性腦病等疾病相關(guān)。

5.1 MYL12A和MYL12B與心臟相關(guān)疾病的研究

在擴(kuò)張型心肌病方面,MRLC(MYL12A和MYL12B)磷酸化水平的降低與心臟扭轉(zhuǎn)、心肌功能障礙以及擴(kuò)張型心肌病的癥狀有關(guān)。關(guān)于肥厚型心肌病的研究表明,MYLK3基因敲除或突變與心肌肥厚有關(guān),而MRLC的磷酸化水平的降低可能參與了肥厚型心肌病的發(fā)生。此外,對心力衰竭的研究發(fā)現(xiàn)MYLK3基因敲除小鼠在心功能方面出現(xiàn)失代償,而心力衰竭患者中也觀察到MYL2磷酸化水平明顯下降,提示MRLC磷酸化水平的降低在心力衰竭的發(fā)生中發(fā)揮了作用,可能與肥厚型和擴(kuò)張型心肌病有關(guān)??偟膩碚f,這些研究結(jié)果強(qiáng)調(diào)了MRLC磷酸化在心臟疾病發(fā)生和發(fā)展中的重要作用 [24-28]。

5.2 MYL12A和MYL12B與腸道屏障研究

以往的研究表明,腸道屏障破壞導(dǎo)致的細(xì)菌滲透會促使病原體相關(guān)分子模式與模式識別受體(如TLR4、TLR和NLRP3)結(jié)合,激活免疫細(xì)胞產(chǎn)生免疫反應(yīng)并分泌細(xì)胞因子,如IL-13IFN-γ。研究還發(fā)現(xiàn),過量的IFN-γ分泌可能增加細(xì)胞旁通透性,其中MLCK通路的激活參與了這一過程。然而,在急性胰腺炎(AP)中,MLCK/p-MLC2通路在腸屏障功能障礙中的確切作用尚不明確。一項(xiàng)研究表明,在AP時(shí),回腸組織中的MLCK和P-MLC2蛋白表達(dá)水平顯著增加,尤其是在模型后的24小時(shí)內(nèi),這表明在急性胰腺炎中,腸道中MLCK激活,MLC2磷酸化,MLCK/p-MLC2通路可能參與了腸屏障功能障礙 [35-36]。

5.3 MYL12A和MYL12B與癌癥研究

研究表明,肌球蛋白輕鏈?zhǔn)侵匾哪[瘤標(biāo)記性分子,通過對肌球蛋白輕鏈的磷酸化和去磷酸化的調(diào)節(jié),影響肌球蛋白的活性,對腫瘤的增殖、侵襲和遷移發(fā)揮重要作用 [29]。MYPT1是肌球蛋白磷酸酶的調(diào)控亞基,它可以催化肌球蛋白輕鏈的去磷酸化,進(jìn)而參與調(diào)控細(xì)胞運(yùn)動,如平滑肌的收縮。MYPT1還可通過對RhoA磷酸化的抑制作用抑制胃癌細(xì)胞的增殖及轉(zhuǎn)移活性 [30]。研究提示,肌球蛋白輕鏈MYL12A和MYL12B在惡性程度較高的乳腺浸潤性導(dǎo)管癌中均呈強(qiáng)陽性表達(dá),表明其與乳腺癌的發(fā)展密切相關(guān)。在具有高轉(zhuǎn)移潛能的乳腺癌組織中,MYPT1表達(dá)受到抑制,導(dǎo)致MRLC磷酸化增加,從而加強(qiáng)腫瘤細(xì)胞的運(yùn)動能力,促進(jìn)轉(zhuǎn)移 [4, 31-34]

5.4 MYL12A和MYL12B與其它疾病的研究

肌球蛋白調(diào)節(jié)輕鏈(MYL12A和MYL12B)還與其它疾病有關(guān):研究發(fā)現(xiàn),在腦缺血再灌注后,缺血再灌注組+CCR5拮抗劑組(DAPTA)的大鼠梗死側(cè)腦皮質(zhì)中,ROCK2和P-MLC2(Ser19)蛋白表達(dá)較少,而缺血再灌注組(I/R)表現(xiàn)出更為明顯的神經(jīng)功能缺損和腦梗死灶。這說明CCR5可能通過ROCK途徑影響MLC的磷酸化水平,進(jìn)而影響腦缺血再灌注后的腦功能 [37];免疫球蛋白G包被顆粒的吞噬是通過Fcγ受體結(jié)合引起的,通過肌動蛋白依賴機(jī)制實(shí)現(xiàn)攝取 [38]

進(jìn)一步的研究發(fā)現(xiàn),MYL9是通過Fcγ介導(dǎo)的吞噬過程中控制攝取的主要MRLC亞型,然而肌動蛋白輕鏈12A或12B在該過程中的缺乏 [38];TRE17癌蛋白能特異性直接結(jié)合MLC2蛋白,TRE17可以間接結(jié)合Rho蛋白家族的Cdc42和Racl,調(diào)節(jié)細(xì)胞骨架肌動蛋白重塑 [39];由平滑肌肌動蛋白輕鏈激酶(smooth muscle myosin light chain kinase,sm MLCK)介導(dǎo)的MYL12A/MYL12B的磷酸化引發(fā)了耳蝸毛細(xì)胞(HCs)中細(xì)胞形態(tài)變化,可能與聽覺功能密切相關(guān) [40]。


6. MYL12A和MYL12B的臨床研究前景

肌球蛋白家族在疾病中的作用引起了廣泛關(guān)注,其中肌球蛋白調(diào)節(jié)輕鏈RLCs(MYL12A和MYL12B)作為其重要組成部分,展現(xiàn)出廣泛而有前景的臨床研究潛力。研究表明,MYL12A和MYL12B參與了MLCK和Rho激酶等通路,涉及細(xì)胞增殖、轉(zhuǎn)移、炎癥等多個(gè)生物調(diào)控過程。此外,它們還被發(fā)現(xiàn)是CD69的配體,參與免疫反應(yīng)。在肌球蛋白家族中,特別是肌球蛋白調(diào)節(jié)輕鏈(MRLCs)的磷酸化在不同肌肉組織中具有重要生物功能,展現(xiàn)了對多種疾病產(chǎn)生重要影響的潛力。隨著研究的深入,MYL12A和MYL12B在心肌損傷、腫瘤、自身免疫性疾病等方面的作用逐漸明晰,這將為更多臨床研究提供新的思路,可能成為未來研究的重要靶點(diǎn)!

產(chǎn)品力薦

為鼎力協(xié)助各藥企針對MYL12A和MYL12B在聽覺、心臟疾病、腸道屏障功能、缺血性腦病、癌癥等疾病在臨床中的研究,華美CUSABIO推出MYL12A(CSB-EP015307HUc7)和MYL12B(CSB-EP015308HUc7)活性蛋白產(chǎn)品,助力您在MYL12A和MYL12B機(jī)制方面的研究或其潛在臨床價(jià)值的探索。

華美MYL12A和MYL12B蛋白

Human MYL12A Protein, Active and Purity Verified
Code: CSB-EP015307HUc7
Human MYL12A Protein, Active Verified Human MYL12A Protein, Purity Verified

High Purity: ≥ 95% as determined by SDS-PAGE.

Verified Activity by a functional ELISA: immobilized Human MYL12A at 2μg/mL can bind Anti-MYL9 recombinant antibody (CSB-RA015318MA1HU). The EC50 is 5.325-6.456 ng/mL.

Human MYL12B Protein, Active and Purity Verified
Code: CSB-EP015308HUc7
Human MYL12B Protein, Active Verified Human MYL12B Protein, Purity Verified

High Purity: ≥ 95% as determined by SDS-PAGE.

Verified Activity by a functional ELISA: Immobilized Human MYL12B at 2μg/mL can bind Anti-MYL9 recombinant antibody (CSB-RA015318MA1HU). The EC50 is 7.760-8.646 ng/mL.


參考文獻(xiàn):

[1] Cao, Lichuang, et al. "Phosphorylation of myosin regulatory light chain affects actomyosin dissociation and myosin degradation." International Journal of Food Science & Technology 54.6 (2019): 2246-2255.

[2] Gao, Xing, et al. "Dephosphorylation of myosin regulatory light chain modulates actin–myosin interaction adverse to meat tenderness." International Journal of Food Science & Technology 52.6 (2017): 1400-1407.

[3] Cao, Lichuang, et al. "Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation." Food Chemistry 356 (2021): 129655.

[4] Aguilar-Cuenca, Rocío, et al. "Tyrosine phosphorylation of the myosin regulatory light chain controls non-muscle myosin II assembly and function in migrating cells." Current Biology 30.13 (2020): 2446-2458.

[5] Sweeney, H. Lee, and Erika LF Holzbaur. "Motor proteins." Cold Spring Harbor Perspectives in Biology 10.5 (2018): a021931.

[6] Mackay, Charles Edward. SrcFK is a key mediator of oxidant signalling pathways in Pulmonary Vascular Smooth Muscle. Diss. King's College London, 2016.

[7] Haraguchi, Takeshi, et al. "Discovery of ultrafast myosin, its amino acid sequence, and structural features." Proceedings of the National Academy of Sciences 119.8 (2022): e2120962119.

[8] Kumar, C. Chandra, et al. "Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in nonmuscle cells." Biochemistry 28.9 (1989): 4027-4035.

[9] Wang, Shaoxun, et al. "Down‐Regulation of Gamma‐Adducin Disrupts the Actin Cytoskeleton in FHH rats and May Contribute to the Development of Hypertension‐induced Renal Injury." The FASEB Journal 32 (2018): 721-10.

[10] Dabrowska, Magdalena, Marek Skoneczny, and Wojciech Rode. "Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells." Tumor Biology 32 (2011): 965-976.

[11] Jiang, Yuhui, et al. "PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells." Nature communications 5.1 (2014): 5566.

[12] Iwasaki, Takahiro, et al. "Diphosphorylated MRLC is required for organization of stress fibers in interphase cells and the contractile ring in dividing cells." Cell structure and function 26.6 (2001): 677-683.

[13] Gutjahr, Marc C., Jérémie Rossy, and Verena Niggli. "Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells." Experimental cell research 308.2 (2005): 422-438.

[14] Parker, Robert, et al. "Phosphoproteomic analysis of cell-based resistance to BRAF inhibitor therapy in melanoma." Frontiers in oncology 5 (2015): 95.

[15] Wang, Shibo, et al. "Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy." Journal of proteomics 231 (2021): 104001.

[16] Hayashizaki, Koji, et al. "Myosin light chains 9 and 12 are functional ligands for CD69 that regulate airway inflammation." Science immunology 1.3 (2016): eaaf9154-eaaf9154.

[17] Kimura, Motoko Y., et al. "A new therapeutic target: the CD69-Myl9 system in immune responses." Seminars in immunopathology. Vol. 41. Springer Berlin Heidelberg, 2019.

[18] Yokoyama, Masaya, et al. "Myosin light chain 9/12 regulates the pathogenesis of inflammatory bowel disease." Frontiers in Immunology 11 (2021): 594297.

[19] Sun, Jie, et al. "Distinct roles of smooth muscle and non-muscle myosin light chain-mediated smooth muscle contraction." Frontiers in Physiology 11 (2020): 593966.

[20] Isobe, Kiyoshi, et al. "CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase." American Journal of Physiology-Renal Physiology 318.3 (2020): F600-F616.

[21] Orgaz, Jose L., et al. "Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance." Cancer Cell 37.1 (2020): 85-103.

[22] Jin, Younggeon, and Anthony T. Blikslager. "The regulation of intestinal mucosal barrier by myosin light chain kinase/rho kinases." International Journal of Molecular Sciences 21.10 (2020): 3550.

[23] Kaibuchi, Kozo, Shinya Kuroda, and Mutsuki Amano. "Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells." Annual review of biochemistry 68.1 (1999): 459-486.

[24] Scruggs, Sarah B., and R. John Solaro. "The significance of regulatory light chain phosphorylation in cardiac physiology." Archives of biochemistry and biophysics 510.2 (2011): 129-134.

[25] Ito, Masaaki, et al. "Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology." Hypertension Research 45.1 (2022): 40-52.

[26] Ding, Peiguo, et al. "Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo." Journal of Biological Chemistry 285.52 (2010): 40819-40829.

[27] Huang, Jian, et al. "Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy." Journal of Biological Chemistry 283.28 (2008): 19748-19756.

[28] Davis, Julien S., et al. "The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation." Cell 107.5 (2001): 631-641.

[29] Tohtong, R., et al. "Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain." Prostate cancer and prostatic diseases 6.3 (2003): 212-216.

[30] Wu, Qian, et al. "Deficiency in myosin light-chain phosphorylation causes cytokinesis failure and multipolarity in cancer cells." Oncogene 29.29 (2010): 4183-4193.

[31] https://www.proteinatlas.org/ENSG00000101608-MYL12A/pathology

[32] Xiao, Xiao, et al. "Transformer with convolution and graph-node co-embedding: an accurate and interpretable vision backbone for predicting gene expressions from local histopathological image." Medical Image Analysis 91 (2024): 103040.

[33] Li, Yin-Chao, et al. "Oridonin suppress cell migration via regulation of nonmuscle myosin IIA." Cytotechnology 68 (2016): 389-397.

[34] Hosono, Yasuyuki, et al. "MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility." Biochemical and Biophysical Research Communications 428.1 (2012): 173-178.

[35] Du, Liwen, et al. "Inhibition of the MLCK/MLC2 pathway protects against intestinal heat stroke-induced injury in rats." Journal of Thermal Biology 116 (2023): 103655.

[36] Rath, Nicola, and Michael F. Olson. "Regulation of pancreatic cancer aggressiveness by stromal stiffening." Nature medicine 22.5 (2016): 462-463.

[37] Li, Laisi, et al. "Effects of CC-chemokine receptor 5 on ROCK2 and P-MLC2 expression after focal cerebral ischaemia–reperfusion injury in rats." Brain Injury 30.4 (2016): 468-473.

[38] Bright, Michael D., and Gad Frankel. "PAK4 phosphorylates myosin regulatory light chain and contributes to Fcγ receptor-mediated phagocytosis." The International Journal of Biochemistry & Cell Biology 43.12 (2011): 1776-1781.

[39] Oliveira, Andre M., and Margaret M. Chou. "The TRE17/USP6 oncogene: a riddle wrapped in a mystery inside an enigma." Frontiers in Bioscience-Scholar 4.1 (2012): 321-334.

[40] Oya, Ryohei, et al. "Phosphorylation of MYL12 by Myosin Light Chain Kinase Regulates Cellular Shape Changes in Cochlear Hair Cells." Journal of the Association for Research in Otolaryngology 22 (2021): 425-441.

特別關(guān)注