Your Good Partner in Biology Research

CD22-B細(xì)胞受體輔因子

日期:2019-11-18 11:05:29

Autolus Therapeutics 是一家臨床階段的生物制藥公司,開發(fā)用于治療癌癥的下一代程序化T細(xì)胞療法。2019年4月23日,該公司宣布FDA已授予AUTO3藥物名稱。AUTO3用于逆轉(zhuǎn)錄病毒載體遺傳修飾的自體富集T細(xì)胞以靶向CD19CD22兩種嵌合抗原受體,用于治療急性淋巴細(xì)胞白血病。這一T細(xì)胞治療法的出現(xiàn),無疑是給了CAR-T細(xì)胞治療研發(fā)人員一劑強心劑。截止到2019年11月,與CD22相關(guān)的臨床研究已近108項。那究竟什么是CD22,主要的功能和作用機制又是什么?本文將從以下幾個方面對CD22進行介紹:


1. CD22是什么?

CD22,又被稱為Siglec-2,普遍存在于正常B細(xì)胞和B細(xì)胞惡性腫瘤中。CD22主要表達于成熟B細(xì)胞,是具有調(diào)控B細(xì)胞激活作用的細(xì)胞表面粘附分子,有助于B細(xì)胞對抗原反應(yīng)敏感性的控制[1][2][3]。Tedder TF團隊進一步證明了CD22表達在B細(xì)胞中具有特異性,并且在小鼠和人類中都受到發(fā)育調(diào)控[4]。如Figure 1所示,CD22可在原B細(xì)胞和前B細(xì)胞中表達,并逐漸轉(zhuǎn)移到細(xì)胞表面,但是表達水平低;在IgM+和IgD+的成熟B細(xì)胞高表達,在濾泡性B細(xì)胞、套細(xì)胞、邊緣區(qū)B細(xì)胞也高表達,但最終在CD27+記憶B細(xì)胞,尤其是漿細(xì)胞中,表達下調(diào)[5]。此外,最近的研究發(fā)現(xiàn),在小鼠腸酸性粒細(xì)胞也觀察到了CD22表達,這是一種新型的表達模式,表明CD22可能具有嗜酸性粒細(xì)胞調(diào)節(jié)功能[6]

CD22 protein expression during B-cell development and activation

Figure 1. CD22 protein expression during B-cell development and activation.


2. CD22的結(jié)構(gòu)

如Figure 2所示,人類CD22基因位于19號染色體長臂(19q13.1),至少有15個外顯子,其中外顯子4-10編碼單鏈Ig域,外顯子11-15編碼跨膜結(jié)構(gòu)域和胞內(nèi)結(jié)構(gòu)域。

CD22 chromosomal location and organization

Figure 2. CD22 chromosomal location and organization.

CD22蛋白是I型跨膜蛋白,分子量為140 kDa,是唾液酸結(jié)合的免疫球蛋白樣凝集素家族的重要成員。CD22的胞外域包含七個Ig域(Figure 3),最遠(yuǎn)端的V-set Ig域在結(jié)合α2,6唾液酸(α2,6sia)配體中起主要作用,相連的C2-set Ig域的功能可能是允許V-set Ig域正確折疊[7][8]。CD22的胞內(nèi)域包括免疫受體酪氨酸抑制基序(ITIM)和免疫受體酪氨酸活化基序(ITAM)[9]。Ig樣結(jié)構(gòu)域1和2包含配體結(jié)合區(qū); 當(dāng)六個保守的酪氨酸殘基中的一個或多個被磷酸化時,各種效應(yīng)分子被募集到胞質(zhì)域。CD22α和CD22β是CD22的兩種亞型,其胞外域分別有5個和7個Ig域,這兩種cDNA亞型來源于同一基因的不同拼接。

CD22 structure

Figure 3. CD22 structure.


3. CD22的配體與信號通路

3.1 CD22的配體

CD22可以與含唾液酸的細(xì)胞相互作用,包括T細(xì)胞、B細(xì)胞、中性粒細(xì)胞、單核細(xì)胞和紅細(xì)胞[10][11]。其中能與CD22胞外配體結(jié)合域相互作用的B細(xì)胞表面唾液酸配體為順式配體,其他細(xì)胞表面配體則為反式配體。CD22通過順式作用與B細(xì)胞表面的配體結(jié)合,通過反式作用與其他細(xì)胞表面配體、可溶性糖蛋白或細(xì)胞連接的抗原結(jié)合[12]。

順式配體是CD22的主要結(jié)合配體,也是CD22活性的重要調(diào)節(jié)劑。CD22作為B細(xì)胞受體(BCR)的一個共受體,通過抗原引起CD22與BCR交聯(lián),觸發(fā)CD22磷酸化,使下游信號蛋白去磷酸化和失活,從而抑制BCR信號傳導(dǎo),是抑制BCR的必需因子。CD22的反式作用可能介導(dǎo)細(xì)胞間交聯(lián)、控制B細(xì)胞黏附和遷移,并對T細(xì)胞信號傳導(dǎo)有重要意義。大多數(shù)B細(xì)胞表面的CD22呈遮蔽態(tài),限制它們與反式配體的作用,除非細(xì)胞經(jīng)過唾液酸酶或高碘酸鹽預(yù)處理,才能結(jié)合外源性唾液酸。非遮蔽態(tài)CD22可能促進其與反式配體或順式配體的特殊亞基(可能包括BCR)作用。

3.2 BCR調(diào)節(jié)機制及下游信號通路

CD22對B細(xì)胞信號傳導(dǎo)的調(diào)節(jié)能力由CD22與BCR的遠(yuǎn)近決定,同時也受細(xì)胞外相互作用的控制。CD22是BCR的一個共受體,通過抗原或抗Ig引起CD22與BCR交聯(lián)。CD22與BCR交聯(lián)后會集中到脂筏上,然后Lyn會磷酸化CD22的酪氨酸殘基[13][14]。磷酸化后,這些酪氨酸殘基會變成下游信號分子SH2結(jié)構(gòu)域的結(jié)合位點,這些分子會進一步激活其他信號傳導(dǎo)分子(Figure 4)。例如Src同源性磷酸酶1(SHP-1)蛋白,主要作用是去磷酸化BCR,從而下調(diào)BCR信號并調(diào)節(jié)Ca2+信號轉(zhuǎn)導(dǎo)[15]

SHP-1的作用對象包括CD19和SLP65/B細(xì)胞接頭蛋白(BLNK)[16]。其中SLP65/BLNK可形成一個支架并關(guān)聯(lián)多個信號分子,包括Vav-1、Bruton酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)。PLCγ2將磷脂酰肌醇4,5-雙磷酸酯(PtdIns(4,5)P2)轉(zhuǎn)化為1,4,5-三磷酸肌醇(Ins(1,4,5)P3)和二?;视停―AG)。Ins(1,4,5)P3可通過多種途徑促進Ca2+從細(xì)胞內(nèi)存儲的釋放,包括Ca2+釋放激活通道(CRAC)活化、核因子κB(NF-κB)激活,T細(xì)胞和因子(NFAT)活化及胞外信號調(diào)節(jié)激酶信號通路。

Intracellular signaling pathways of CD22

Figure 4. Intracellular signaling pathways of CD22


4. CD22與疾病

在第三部分中已經(jīng)提到,CD22 分子對BCR復(fù)合物識別抗原產(chǎn)生的信號起抑制作用[16]。該抑制作用在CD22缺陷小鼠的研究實驗中得到了進一步驗證[17]。CD22缺陷小鼠的B細(xì)胞均表現(xiàn)出輕微活化狀態(tài),high IgD、low IgM的成熟B細(xì)胞比例增高,B細(xì)胞表面IgM (sIgM)水平降低,IgM的分泌增加,MHC II類分子表達量增加,B細(xì)胞激活的閾值下調(diào)[18]。作為限制B細(xì)胞的抗原,CD22為治療自身免疫疾病和血液癌癥中的B細(xì)胞失調(diào)提供了有效靶點。

4.1 CD22與自身免疫性疾病

CD22通過與BCR交聯(lián),抑制B細(xì)胞對自身抗原的反應(yīng),阻止自身反應(yīng)性B細(xì)胞激活,從而抑制自身免疫性疾病的發(fā)生。CD22表達或功能受損在自身免疫性疾病的發(fā)病機制中起作用,如系統(tǒng)性紅斑狼瘡(SLE)、類風(fēng)濕性關(guān)節(jié)炎(RA)等[19][20]。

SLE是一種常見的累及多臟器的慢性系統(tǒng)性自身免疫性疾病,其主要特征是多克隆B細(xì)胞異?;罨⒆陨砜贵w產(chǎn)生、免疫復(fù)合物沉積,引起多臟器損傷。CD22缺陷小鼠的B細(xì)胞對受體信號的反應(yīng)過度,BCR結(jié)合引起的Ca2+內(nèi)流增加,使血清IgG抗dsDNA抗體滴度增加,這些抗體是多克隆起源的,存在不良變異和高親和力。

4.2 CD22與血液癌癥

在第一部分中,我們已經(jīng)提到,CD22僅在成熟B細(xì)胞中表達。在大多數(shù)情況下,正常B細(xì)胞向腫瘤細(xì)胞轉(zhuǎn)化過程中CD22 分子依然表達。相關(guān)數(shù)據(jù)顯示,約60-80%的B細(xì)胞系淋巴瘤及白血病細(xì)胞表達CD22分子。目前除了化學(xué)療法、放射療法和裸mAb療法之外,放射免疫療法正在成為非霍奇金淋巴瘤患者的第四種治療方法。放射性標(biāo)記的CD22 mAb在B細(xì)胞淋巴瘤診斷和分期中敏感度很高。131I或90Y標(biāo)記的CD22 mAb(LL2,埃普拉單抗)與CD22細(xì)胞外第三個Ig結(jié)構(gòu)域結(jié)合可以完全緩解由裸CD22 mAb(LL2)在體外介導(dǎo)的抗體和補體依賴性細(xì)胞毒性[21][22]


5. CD22相關(guān)藥物研究進展

CD22分子是B細(xì)胞表面抑制性輔助受體之一,它與B細(xì)胞的發(fā)展、分化和功能有著密切的關(guān)系。CD22限制性地表達于成熟B細(xì)胞和大多數(shù)B淋巴瘤細(xì)胞表面。以CD22為靶點,進行腫瘤免疫治療已經(jīng)成為免疫研究熱點之一。目前,關(guān)于CD22分子的免疫靶向治療,除了治療性抗體外,還有CAR-T細(xì)胞療法。截止到2019年11月,雖然CD22相關(guān)抗體藥物已批準(zhǔn)上市的只有兩種,但關(guān)于CD22 CAR-T細(xì)胞治療和抗體藥物的臨床研究有近108項。FDA已批準(zhǔn)上市的CD22相關(guān)藥物如下表所示:

Target Name Product Name Actions Indication Company Approved Time
B-cell receptor CD22 Inotuzumab ozogamicin Besponsa Antibody relapsed or refractory CD22-positive B cell precursor acute lymphoblastic leukaemia WYETH PHARMS INC 08/17/2017
B-cell receptor CD22 Moxetumomab Pasudotox Lumoxiti Binder Relapsed/Refractory Hairy Cell Leukemia ASTRAZENECA AB 09/13/2018

在研藥物:

Target Name Product Name Actions Indication Company Phase
B-cell receptor CD22 Epratuzumab / Antibody Investigated for use/treatment in leukemia (lymphoid), lymphoma (non-hodgkins), and systemic lupus erythematosus UCB Pharma Phase II

在研CAR-T細(xì)胞治療詳情請點擊這里:https://clinicaltrials.gov/ct2/results?cond=&term=CD22&cntry=&state=&city=&dist=.


CD22蛋白

Recombinant Human B-cell receptor CD22(CD22),partial (Active) (Code: CSB-MP004900HU)

High Purity Validated by SDS-PAGE
CSB-MP004900HU SDS-PAGE

(Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP004900HU

Immobilized CD22 at 2 μg/ml can bind Anti-CD22 rabbit monoclonal antibody, the EC50 of human CD22 protein is 4.034-4.800 ng/ml.


References

[1] Pezzutto A, Rabinovitch PS, et al. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin [J]. J Immunol. 1988, 140:1791–1795.

[2] Wilson GL, Fox CH, et al. cDNA cloning of the B cellmembrane protein CD22: amediator of B-B cell interactions [J]. J ExpMed. 1991, 173:137–146.

[3] Thomas Dorner, Anthony Shock, et al. CD22 and Autoimmune Disease [J]. International Reviews of Immunology. 2012, 31:363–378.

[4] Tedder TF, Poe JC, et al. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction [J]. Adv Immunol. 2005, 88:1-50.

[5] Daridon C, Blassfeld D, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression andmigration of B-cells in systemic lupus erythematosus [J]. Arthritis ResTher. 2010, 12:R204.

[6] Wen T, Mingler MK, et al. The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia [J]. J Immunol. 2012, 188:1075–1082.

[7] Engel P, Wagner N, et al. Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand [J]. J ExpMed. 1995, 181:1581–1586.

[8] Nath D, van derMerwe PA, et al. Theamino-terminal immunoglobulin like domain of sialoadhesin contains the sialic acid binding site: comparison with CD22 [J]. J Biol Chem. 1995, 270:26184–26191.

[9] Wilson GL, Fox CH, et al. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions [J]. J ExpMed. 1991, 173:137–146.

[10] Engel P, Nojima Y, et al. The same epitope on cD22 of B lymphocytes mediates the adhesion of erythmcytes, T and B lymphocytes, neutrophils, and monocytes [J]. J Immunol. 1993, 150(11):4719-4732.

[11] Ramya TN, Weerapana E, et al. In situ trans ligands of CD22 identi6ed by glycan-protein photocross-linking-enabled proteomics [J].Mol Cell Pmteomics. 2010, 9(6):1339-1351.

[12] Smith KGC, Tarlinton DM, et al. Inhibition of the B cell by CD22: a requirement for Lyn [J]. J ExpMed. 1998, 187:807-811.

[13] Xu Y, Harder KW, et al. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity [J]. 2005, 22:9–18.

[14] Doody GM, Justement LB, et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP [J]. Science. 1995, 269:242–244.

[15] Gerlach J, Ghosh S, et al. B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signaling [J]. Eur J Immunol. 2003, 33:3418–3426.

[16] June Ereño-Orbea, Taylor Sicard, et al. Molecular basis of human CD22 function and therapeutic targeting [J]. Nature Communications. 2017, 8(764).

[17]Samardzie T, Marinkovic D, et al.Reduction of marginal zone B cells in CD22-deficient mice [J]. Eur J Immunol. 2002, 32(2):561-567.

[18] Tooze RM, Doody GM, et al. Counterregulation by the coreceptom CDl9 and CD22 of MAP kinase activation by membrane immunoglobulin [J]. Immunity. 1997, 7(1):59-67.

[19] O Keefe TL, Williams GT, et al. Hyperresponsive B cells in CD22-de6cient mice [J]. Science. 1996, 274(5288):798-801.

[20] Nakiri Y, Minowa K, et al. E1pression of CD22 on peripheral B cells in patients with rheumatoid arthritis: relation to CD5-positive B cells [J]. Clin Rheumatol. 2007, 26(10):1721-1723.

[21] Thomas F. Tedder, Jonathan C. Poe, et al. CD22: A Multifunctional Receptor That Regulates B Lymphocyte Survival and Signal Transduction [J]. Advances in immunology. 2005, 88:1-50.

[22] Carnahan, J., Wang, P., et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: Characterization of in vitro properties [J]. Clin. Cancer Res. 2003, 9:3982S–3990S.

特別關(guān)注