Your Good Partner in Biology Research

DKK1:經(jīng)典的Wnt/β-catenin通路拮抗劑,癌癥雙向調(diào)控靶點(diǎn)?

日期:2023-07-26 14:11:06

近年來,DKK1在腫瘤治療中引起關(guān)注!臨床研究顯示其廣泛應(yīng)用前景。君實(shí)生物(Junshi Biosciences)的JS015注射液已于去年獲得IND受理,一種用于晚期惡性實(shí)體瘤的重組人源化抗DKK1單克隆抗體。此外,Leap Therapeutics公司的Sirexatamab(DKN-01,曾名LY-2812176)正在肝癌、膽管癌、胃癌等腫瘤中進(jìn)行臨床II期研究,而另一款DKK1抗體BHQ-880已在2020年完成了多發(fā)性骨髓瘤的II期臨床試驗(yàn)。目前,DKK1作為經(jīng)典Wnt信號通路的拮抗劑,不僅是腫瘤診斷和預(yù)后評價(jià)的血清學(xué)標(biāo)志物,更是重要的腫瘤治療新靶點(diǎn)!


1. 什么是DKK1?

1.1 DKK1的結(jié)構(gòu)

Dickkopf相關(guān)蛋白1(Dickkopf-related protein 1,DKK1)是Wnt/B-catenin信號通路的典型抑制劑,屬于DKK家族(其余包括DKK2、DKK3DKK4)。DKK1由人類DKK1基因編碼,位于10q11.2,長度約為3.5kb,編碼一種分子量約為28.7KDa的分泌型糖蛋白,含約266個(gè)氨基酸。DKK1的結(jié)構(gòu)包括:一個(gè)N端的信號序列、兩個(gè)保守的富半胱氨酸區(qū)域(Dkk_N和輔脂肪酶折疊區(qū)域)以及一個(gè)靠近蛋白C端的N-糖化位點(diǎn)。其信號序列由20~30個(gè)氨基酸組成,負(fù)責(zé)定位DKK1肽鏈在內(nèi)質(zhì)網(wǎng),并介導(dǎo)DKK1的細(xì)胞外分泌。輔脂肪酶折疊區(qū)域是由多個(gè)短的β疊和二硫鍵構(gòu)成的類指結(jié)構(gòu),能與Wnt受體LRP5/LRP6及穿膜蛋白Kremen1/2結(jié)合成三聚體,從而誘導(dǎo)內(nèi)吞作用并抑制Wnt信號通路。Dkk_N區(qū)域還含有一個(gè)保守的富胱氨酸序列(圖1[1-3]。

DKK1的結(jié)構(gòu)示意圖

圖1. DKK1的結(jié)構(gòu)示意圖 [1]

1.2 DKK1的表達(dá)和功能

DKK1主要由成骨細(xì)胞、骨細(xì)胞分泌,其次也表達(dá)于很多組織和細(xì)胞類型,包括胎盤、皮膚、前列腺、血管內(nèi)皮、腎臟、成骨細(xì)胞和骨細(xì)胞等多個(gè)部位。DKK1作為一種分泌型糖蛋白,主要通過與Wnt蛋白競爭性結(jié)合LRP5/6受體,拮抗Wnt/β-catenin信號通路活性,調(diào)節(jié)細(xì)胞增殖、分化及癌變,影響細(xì)胞凋亡、瘤細(xì)胞侵襲和轉(zhuǎn)移。越來越多的研究證實(shí)DKK1在腫瘤發(fā)生發(fā)展中呈現(xiàn)多樣化的特點(diǎn),甚至在同一種細(xì)胞中,因生理環(huán)境不同表現(xiàn)出相反的調(diào)節(jié)作用,其功能相對較復(fù)雜 [3-6]。


2. DKK1拮抗Wnt/β-catenin信號通路的調(diào)節(jié)機(jī)制

DKK1被視為Wnt/β-catenin信號通路的典型抑制因子,對細(xì)胞生命活動具有重要調(diào)控作用,在多種腫瘤的發(fā)展中扮演不可替代的角色。最新研究表明,盡管DKK1通常作為傳統(tǒng)Wnt/β-catenin信號通路的抑制劑,但在某些研究中未能發(fā)揮其抑制劑的作用,這可能與β-catenin基因的變異有關(guān)。

目前的研究認(rèn)為,DKK1通過至少兩種方式抑制經(jīng)典Wnt信號通路。首先,它與Frizzled相關(guān)蛋白質(zhì)競爭性地阻止Frizzled與Wnt結(jié)合。其次,DKK1可以與細(xì)胞膜的Wnt受體LRP5/6和共受體Kremen1/2結(jié)合,形成聚合物并使其內(nèi)吞,從而關(guān)閉Wnt信號,終止靶基因異常轉(zhuǎn)錄進(jìn)程。此外,DKK1本身也是經(jīng)典Wnt信號通路的靶基因,其啟動子區(qū)域含有β-catenin結(jié)合位點(diǎn)。一些研究認(rèn)為轉(zhuǎn)錄生成的DKK1能通過負(fù)反饋機(jī)制抑制上游基因的表達(dá),與信號鏈上的其他因子共同維持內(nèi)環(huán)境的穩(wěn)態(tài)(圖2[7-12]。

DKK1拮抗Wnt/β-catenin信號通路的調(diào)節(jié)機(jī)制

圖2. DKK1拮抗Wnt/β-catenin信號通路的調(diào)節(jié)機(jī)制 [12]


3. DKK1在腫瘤等其它疾病中的作用

DKK1主要通過Wnt/β-catenin信號通路發(fā)揮作用,以往研究表明DKK1通過該通路參與了多種疾病的發(fā)病機(jī)制。尤其在腫瘤中,DKK1在不同研究條件下呈現(xiàn)出截然不同的結(jié)果。據(jù)報(bào)道,在多發(fā)性骨髓瘤 [11]、肝胞癌 [12]、肝/腎母細(xì)胞癌 [13]、非小細(xì)胞肺癌 [14]、頭頸部癌 [15]、食管癌 [16]、胰腺癌 [17]等腫瘤中DKK1往往表達(dá)增高,呈現(xiàn)促癌基因的特征;在胃癌 [18]、膀胱癌 [19]、黑色素瘤 [20]、結(jié)直腸癌 [21]中,DKK1表達(dá)降低,呈現(xiàn)抑癌基因特征。

3.1 DKK1和多發(fā)性骨髓瘤

DKK1在多發(fā)性骨髓瘤MM中的作用是促進(jìn)骨破壞,而抑制DKK1可以減輕骨破壞程度。高表達(dá)的DKK1與廣泛的骨破壞相關(guān),因?yàn)樗种屏斯撬韪杉?xì)胞向成骨細(xì)胞的分化。近年來,抑制DKK1的抗體和疫苗成為治療多發(fā)性骨髓瘤的新方法。研究發(fā)現(xiàn),抗DKK1疫苗能夠引發(fā)CD4+和CD8+T細(xì)胞反應(yīng),而保護(hù)裸鼠免受MM侵襲。DKK1聯(lián)合MMSA-1的多表位抗原疫苗比DKK1/MMSA-1單抗原疫苗誘導(dǎo)的T細(xì)胞免疫反應(yīng)更強(qiáng),增強(qiáng)了對骨髓瘤細(xì)胞及MM骨破壞的抑制作用 [22]。因此,靶向DKK1可能為多發(fā)性骨髓瘤治療帶來新的方向。

3.2 DKK1和胃癌

研究發(fā)現(xiàn),胃癌細(xì)胞中DKK1表達(dá)強(qiáng),正常胃黏膜中表達(dá)較弱。DKK1高表達(dá)與胃癌晚期、遠(yuǎn)處轉(zhuǎn)移、淋巴侵潤和血管侵犯相關(guān)。敲除DKK1可減弱胃癌細(xì)胞的增殖、遷移和侵襲能力。DKK1陽性的胃癌患者存活期較低。因此,血清中DKK1含量增加和胃癌組織中DKK1表達(dá)增加有助于胃癌的診斷和預(yù)測。Sirexatamab(DKN-01)是一種針對DKK1的靶向藥物,在臨床治療胃癌方面顯示出潛力。數(shù)據(jù)顯示,Sirexatamab通過結(jié)合DKK1降低血管增生,并上調(diào)關(guān)鍵細(xì)胞因子IFNγ、IL-15IL-33的水平,促進(jìn)腫瘤細(xì)胞死亡。它還可以激活Wnt信號通路,重編程免疫抑制細(xì)胞MDSC,降低其免疫抑制活性(圖3[23-25]。

Sirexatamab(DKN-01)在臨床治療胃癌方面顯示出潛力

圖3. Sirexatamab(DKN-01)在臨床治療胃癌方面顯示出潛力 [25]

3.3 DKK1和結(jié)直腸癌

血管生成擬態(tài)(Vasculogenic Mimicry,VM)是腫瘤細(xì)胞在特定條件下形成的類似血管壁結(jié)構(gòu),可輸送血液,促進(jìn)腫瘤生長和血管構(gòu)建。參與VM的腫瘤細(xì)胞容易發(fā)生血道轉(zhuǎn)移,對化療和抗血管生成治療不敏感,導(dǎo)致患者預(yù)后差。研究發(fā)現(xiàn),存在VM的結(jié)腸癌組織中DKK1表達(dá)較低,DKK1過表達(dá)的HCT116細(xì)胞形成管狀結(jié)構(gòu)能力明顯減弱,且VE-cadherin表達(dá)降低。此外,DKK1可抑制裸鼠移植瘤組織中HCT116細(xì)胞形成VM。因此,DKK1過表達(dá)可抑制結(jié)直腸癌VM形成 [26]

3.4 DKK1和乳腺癌

DKK1在乳腺癌中的作用是復(fù)雜的,既可能具有抑制腫瘤的效果,也可能具有促進(jìn)腫瘤的效果。在某些情況下,DKK1被認(rèn)為是抑制乳腺癌的因素,特別是對于骨轉(zhuǎn)移的抑制。它可以增強(qiáng)破骨細(xì)胞的活性,并抑制乳腺癌細(xì)胞向骨骼進(jìn)行轉(zhuǎn)移。因此,高血清DKK1水平可以作為乳腺癌骨轉(zhuǎn)移的特異性診斷指標(biāo) [27]。然而,有研究表明,DKK1在乳腺癌中也可能具有促進(jìn)血管生成、促進(jìn)乳腺癌細(xì)胞遷移和侵襲的能力。DKK1可以通過VEGFR2信號級聯(lián)反應(yīng)誘導(dǎo)血管生成,增加乳腺癌細(xì)胞的侵襲和血管生成能力 [28-29]。

3.5 DKK1和胰腺癌

采用無創(chuàng)血清學(xué)檢測胰腺癌血清中CA19-9、s-ULBP2、DKK1表達(dá)水平與良性胰腺病患者及健康人群的差別,實(shí)驗(yàn)結(jié)果顯示,胰腺癌患者血清CA19-9、s-ULBP2、DKK1含量明顯高于良性胰腺病組及健康對照組。通過Logistic回歸分析及ROC曲線分析,提示CA19-9的敏感度最高,DKK1的特異性最高。研究認(rèn)為,三者聯(lián)合檢測可提高胰腺癌診斷準(zhǔn)確率且可評估胰腺癌的臨床治療效果 [30]

3.6 DKK1和膀胱癌

基于GEPIA數(shù)據(jù)庫,DKK1在膀胱癌組織中相對于癌旁組織表達(dá)量下降,DKK1高表達(dá)者總體生存率較DKK1低表達(dá)者要減小。ELISA檢測血清中DKK1濃度顯示,膀胱癌中血清濃度顯著高于健康者,且淋巴結(jié)轉(zhuǎn)移的膀胱癌DKK1血清濃度顯著高于未轉(zhuǎn)移者。III期+I(xiàn)V期膀胱癌患者DKK1濃度明顯高于I期+II期患者。然而,實(shí)驗(yàn)與數(shù)據(jù)庫中的結(jié)果相矛盾??赡艿脑蚴菧y量對象不同(血清蛋白水平vs.組織中基因水平) [19, 31]。因此,需要進(jìn)一步的驗(yàn)證DKK1在膀胱癌發(fā)展中的具體用機(jī)制,探索其作為新的治療靶點(diǎn)的可能性。

3.7 DKK1和其它疾病

除了與腫瘤相關(guān),DKK1還與多種疾病有關(guān)。在帕金森病的6-OHDA損傷大鼠模型中,DKK1被誘導(dǎo)表達(dá)于腹側(cè)中腦,敲低DKK1可以減輕MPP+誘導(dǎo)的PC12細(xì)胞凋亡,并促進(jìn)β-catenin和p-Ser9-GSK-3β的表達(dá) [32]。臨床前研究顯示,DKK1不僅抑制成骨細(xì)胞,同時(shí)還激活破骨細(xì)胞,導(dǎo)致骨穩(wěn)態(tài)破壞和抑制骨形成。研究表明DKK1可能參與強(qiáng)直性脊柱炎(Ankylosing Spondylitis,AS)等新骨形成的過程 [33]。

在牙周炎研究中,下調(diào)DKK1可以抑制促炎細(xì)胞因子IL-1β、IL-6、IL-8的表達(dá),促進(jìn)成骨標(biāo)志物BMP-2OCN、RunX2的mRNA表達(dá)以及鈣結(jié)節(jié)生成,同時(shí)促進(jìn)人牙周膜干細(xì)胞(hPDLSCs)成骨分化,從而抑制牙周炎的發(fā)展。進(jìn)一步研究DKK1在這些疾病中的作用,有助于發(fā)現(xiàn)新的治療方法和藥物 [34-35]。


4. DKK1的臨床在研藥物

來自Pharmsnap的數(shù)據(jù)表明(表1),BHQ-880和Sirexatamab等藥物作為DKK1抑制劑,正在進(jìn)行臨床研究,用于治療多發(fā)性骨髓瘤等多種腫瘤。同時(shí),DKK1負(fù)載的樹突狀細(xì)胞疫苗和JS015單克隆抗體也顯示出潛力。值得一提的是,Sirexatamab在一線治療晚期胃癌和胃食道結(jié)合部癌的2a期臨床試驗(yàn)初步結(jié)果顯示,客觀緩解率(ORR)達(dá)到68.2%,DKK1高表達(dá)腫瘤患者的ORR更高達(dá)90% [36]。

此外,還有其它DKK1抑制劑和調(diào)節(jié)劑處于臨床前或藥物發(fā)現(xiàn)階段,用于肝癌,卵巢癌,子宮內(nèi)膜癌,前列腺癌,免疫球蛋白a腎病等疾病治療。因此,通過針對DKK1的靶向治療方法,利用不同類型的藥物,如單克隆抗體、重組多肽和小分子化藥物,有望開發(fā)出更有效的選擇,為腫瘤或自身免疫性疾病的治療帶來新的希望。

藥物 靶點(diǎn) 作用機(jī)制 在研適應(yīng)癥 藥物最高研發(fā)狀態(tài)(全球) 藥物類型 在研機(jī)構(gòu)
BHQ-880 DKK1 DKK1抑制劑 多發(fā)性骨髓瘤 臨床2期 單克隆抗體 Novartis AG; MorphoSys AG; Novartis Pharma AG
Sirexatamab (DKN-01) DKK1 DKK1抑制劑 結(jié)直腸癌;胃腺癌;食管癌;胃食管交界處癌;膽道腫瘤;肝癌;卵巢癌;子宮內(nèi)膜癌;前列腺癌;胃癌;多發(fā)性骨髓瘤;非小細(xì)胞肺癌;肉瘤;鱗狀細(xì)胞癌 臨床2期 單克隆抗體 飛躍治療公司
(Leap Therapeutics, Inc.);禮來制藥
Eli Lilly & Co.
DKK1 loaded dendritic cell vaccine(Case Comprehensive Cancer Center) DKK1 免疫刺激劑 淀粉樣變性;
免疫球蛋白a腎??;
意義不明的單克隆丙種球蛋白?。欢喟l(fā)性骨髓瘤;陰燃多發(fā)性骨髓瘤
早期臨床1期 預(yù)防性疫苗 The Case Comprehensive Cancer Center
JS015 DKK1 DKK1抑制劑 晚期惡性實(shí)體瘤 臨床申請批準(zhǔn) 單克隆抗體 上海君實(shí)生物醫(yī)藥科技股份有限公司
(Shanghai Junshi Biosciences Co., Ltd.)
DKK1-CAR-iNKT DKK1 / 腫瘤 臨床前 單克隆抗體 蘇達(dá)有限公司
(Arovella Therapeutics Ltd.)
anti-DKK1 antibodies DKK1 DKK1調(diào)節(jié)劑 腫瘤 臨床前 生物藥 扭轉(zhuǎn)生物科技有限公司
(Twist Bioscience Corp.)
APC-002 DKK1 DKK1抑制劑 食管癌;胃癌 臨床前 生物藥 安沛治療有限公司
(Aptacure Therapeutics Ltd.)
Recombinant human R-spondin 1 DKK1 DKK1調(diào)節(jié)劑 / 臨床1期 重組多肽 /
RN-564 DKK1 DKK1抑制劑 / 臨床1期 單克隆抗體 /
IIIC3 (Enzo Biochem, Inc.) DKK1 DKK1抑制劑 / 藥物發(fā)現(xiàn) 小分子化藥 /
Mab-B3 DKK1 DKK1抑制劑 / 藥物發(fā)現(xiàn) 單克隆抗體 /

表1:DKK1的在研臨床藥物

為鼎力協(xié)助科研和藥企人員針對DKK1在腫瘤和自身免疫等疾病相關(guān)的臨床應(yīng)用研究,CUSABIO推出DKK1活性蛋白(Code: CSB-MP006920HU(A4))產(chǎn)品,助力您在DKK1機(jī)制方面的研究或其潛在臨床價(jià)值的探索(點(diǎn)擊查看DKK1全系列產(chǎn)品:蛋白;抗體;試劑盒)。

DKK1蛋白

Recombinant Human Dickkopf-related protein 1(DKK1) (Active) (Code: CSB-MP006920HU(A4))

High Purity Validated by SDS-PAGE
CSB-MP006920HU(A4) SDS-PAGE

The purity was greater than 95% as determined by SDS-PAGE. (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP006920HU(A4)

Immobilized Human DKK1 at 2 μg/mL can bind Anti-DKK1 recombinant antibody (CSB-RA006920MA1HU), the EC50 is 1.283-2.544 ng/mL.


參考文獻(xiàn):

[1] Chu, Hang Yin, et al. "Dickkopf-1: A promising target for cancer immunotherapy." Frontiers in Immunology 12 (2021): 658097.

[2] Diarra, Danielle, et al. "Dickkopf-1 is a master regulator of joint remodeling." Nature medicine 13.2 (2007): 156-163.

[3] Bafico, Anna, et al. "Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow." Nature cell biology 3.7 (2001): 683-686.

[4] Zhu, Guohua, et al. "Expression and role of Dickkopf-1 (Dkk1) in tumors: from the cells to the patients." Cancer Management and Research (2021): 659-675.

[5] Yamaguchi, Yuji, et al. "Regulation of skin pigmentation and thickness by Dickkopf 1 (DKK1)." Journal of Investigative Dermatology Symposium Proceedings. Vol. 14. No. 1. Elsevier, 2009.

[6] Ke, Hua Zhu, et al. "Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases." Endocrine reviews 33.5 (2012): 747-783.

[7] Leijten, Jeroen Christianus Hermanus, et al. "Gremlin 1, frizzled‐related protein, and Dkk‐1 are key regulators of human articular cartilage homeostasis." Arthritis & Rheumatism 64.10 (2012): 3302-3312.

[8] Dun, Xiaoyi, et al. "Differential expression of DKK-1 binding receptors on stromal cells and myeloma cells results in their distinct response to secreted DKK-1 in myeloma." Molecular cancer 9.1 (2010): 1-9.

[9] Niida, Atsushi, et al. "DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway." Oncogene 23.52 (2004): 8520-8526.

[10] Zhou, Yu-Xin, et al. "Nomogram Incorporating the WNT/β-Catenin Signaling Pathway for Predicting the Survival of Cutaneous Melanoma." International Journal of General Medicine (2021): 2751-2761.

[11] Purro, Silvia A., Soledad Galli, and Patricia C. Salinas. "Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases." Journal of molecular cell biology 6.1 (2014): 75-80.

[12] Fulciniti, Mariateresa, et al. "Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma." Blood, The Journal of the American Society of Hematology 114.2 (2009): 371-379.

[13] Shen, Qiujin, et al. "Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study." The lancet oncology 13.8 (2012): 817-826.

[14] Sun, Jinlin, Xudong Chen, and Yansen Wang. "Comparison of the diagnostic value of CEA combined with OPN or DKK1 in non?small cell lung cancer." Oncology Letters 20.3 (2020): 3046-3052.

[15] Gosepath, Eva M., et al. "Acquired cisplatin resistance in the head–neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1." International journal of cancer 123.9 (2008): 2013-2019.

[16] Song, Qingping, et al. "miR-33a-5p inhibits the progression of esophageal cancer through the DKK1-mediated Wnt/β-catenin pathway." Aging (Albany NY) 13.16 (2021): 20481.

[17] Igbinigie, Eseosaserea, et al. "Dkk1 involvement and its potential as a biomarker in pancreatic ductal adenocarcinoma." Clinica chimica acta 488 (2019): 226-234.

[18] Jiang, Jiang, et al. "FOXC1 negatively regulates DKK1 expression to promote gastric cancer cell proliferation through activation of Wnt signaling pathway." Frontiers in Cell and Developmental Biology 9 (2021): 662624.

[19] Sun, D. K., et al. "Serum Dickkopf-1 levels as a clinical and prognostic factor in patients with bladder cancer." Genet Mol Res GMR 14.4 (2015): 18181-18187.

[20] Liao, Yangying, et al. "Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation." Human Cell 34.5 (2021): 1532-1544.

[21] Rawson, James B., et al. "Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients." Carcinogenesis 32.5 (2011): 741-747.

[22] Lu, Chenyang, et al. "A novel multi‐epitope vaccine from MMSA‐1 and DKK 1 for multiple myeloma immunotherapy." British journal of haematology 178.3 (2017): 413-426.

[23] Klempner, S. J., et al. "Safety and efficacy of a DKK1 inhibitor (DKN-01) in combination with pembrolizumab (P) in patients (Pts) with advanced gastroesophageal (GE) malignancies." Annals of Oncology 29 (2018): viii222.

[24] Jarman, Edward J., et al. "DKK1 drives immune suppressive phenotypes in intrahepatic cholangiocarcinoma and can be targeted with anti‐DKK1 therapeutic DKN‐01." Liver International 43.1 (2023): 208-220.

[25] https://www.sec.gov/Archives/edgar/data/1509745/000110465921117855/tm2128111d1_ex99-2.htm

[26] Yao, Lingli, et al. "Dickkopf‐1‐promoted vasculogenic mimicry in non‐small cell lung cancer is associated with EMT and development of a cancer stem‐like cell phenotype." Journal of Cellular and Molecular Medicine 20.9 (2016): 1673-1685.

[27] Zhuang, Xueqian, et al. "Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1." Nature cell biology 19.10 (2017): 1274-1285.

[28] Niu, Jie, et al. "DKK1 inhibits breast cancer cell migration and invasion through suppression of β-catenin/MMP7 signaling pathway." Cancer cell international 19.1 (2019): 1-13.

[29] Choi, Sung Hoon, et al. "Dickkopf-1 induces angiogenesis via VEGF receptor 2 regulation independent of the Wnt signaling pathway." Oncotarget 8.35 (2017): 58974.

[30] Cui, Dapeng, et al. "Value analysis of CA19-9, s-ULBP2 and Dkk1 in the diagnosis of pancreatic cancer." The Journal of Practical Medicine (2017): 4086-4089.

[31] Wei, Ruqiong, et al. "Analyzing the prognostic value of DKK1 expression in human cancers based on bioinformatics." Annals of translational medicine 8.8 (2020).

[32] Dun, Yaoyan, et al. "Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats." Neuroscience letters 525.2 (2012): 83-88.

[33] Daoussis, Dimitrios, et al. "Evidence that Dkk‐1 is dysfunctional in ankylosing spondylitis." Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 62.1 (2010): 150-158.

[34] Li, Bei, et al. "GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment." Scientific Reports 6.1 (2016): 26542.

[35] Wang, Chengze, et al. "HOXA10 inhibit the osteogenic differentiation of periodontal ligament stem cells by regulating β-catenin localization and DKK1 expression." Connective Tissue Research 62.4 (2021): 393-401.

[36] Yamabuki, Takumi, et al. "Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas." Cancer research 67.6 (2007): 2517-2525.

特別關(guān)注