Your Good Partner in Biology Research

PROM1:一種新的腫瘤干細(xì)胞CSCs表面標(biāo)志物,未來新分子靶點!

日期:2023-02-15 16:19:22

近期,Science Translational Medicine雜志發(fā)表的一篇題為“Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy”研究引起高度的關(guān)注 [1]。該研究團隊開發(fā)了靶向CD133-GSC的嵌合抗原受體巨噬細(xì)胞(CAR-MΦ)免疫療法,用于清除腫瘤切除后殘留的CD133-GSCs。本項研究證實,在神經(jīng)膠質(zhì)瘤GBM小鼠模型中,靶向CD133-GSCs,可發(fā)揮抗腫瘤免疫作用,抑制GBM術(shù)后的復(fù)發(fā)率,并減少抗腫瘤藥物的毒副作用。

CD133又叫PROM1,越來越多的實驗證據(jù)支持PROM1可能是腫瘤(尤其是實體瘤)干細(xì)胞表面特異性表達的分子。目前為止,已有臨床研究將PROM1作為靶點或作為靶向性殺死腫瘤干細(xì)胞的分子靶點。因此,PROM1極有可能成為治療腫瘤的未來新分子靶點,為最終治療惡性腫瘤提供新的途徑!


1. 什么是PROM家族?

Prominin(PROM)家族有2個成員,Prominin-1和Prominin-2。Prominin來源于希臘語“prominere”突起,由于Prominin-1和Prominin-2均定位于細(xì)胞膜的突起,因而得名。Prominin-1主要在胰腺、肝臟、前列腺等上皮細(xì)胞和CSCs、膠質(zhì)細(xì)胞等非上皮細(xì)胞表達,定位于細(xì)胞膜上表面突起。Prominin-2主要在腎小管等上皮細(xì)胞表達,定位于細(xì)胞膜的上表面和下表面的突起 [2-4]。目前,Prominin-1作為第一個被鑒定為“Prominin”的蛋白質(zhì),是一種新發(fā)現(xiàn)干細(xì)胞表面抗原標(biāo)志,在腫瘤的診斷、治療和預(yù)防方面發(fā)揮著重要作用,成為PROM家族熱門的研究成員。


2. 什么是Prominin-1(PROM1)?

Prominin-1(PROM1,又名CD133)屬于五次跨膜糖蛋白Prominin家族的成員。人類的Prominin-1和Prominin-2基因分別定位于染色體4p15.32和2q11.1。PROM家族成員具有相同的空間結(jié)構(gòu),為五次跨膜的膽固醇結(jié)合糖蛋白,N端位于細(xì)胞外側(cè),C端位于細(xì)胞內(nèi)側(cè),細(xì)胞內(nèi)的2個環(huán)富含半胱氨酸,細(xì)胞外的2個環(huán)分別包含4個N連接的糖基化位點(圖1[5]。1997年Miraglia等人在CD34+人造血干細(xì)胞和祖細(xì)胞(hematopoietic stem and progenitor cells,HSPCs)的表面發(fā)現(xiàn)CD133/PROM1后,人們對PROM1的研究便不斷升溫。

PROM1起初的功能是作為造血祖細(xì)胞的特異性標(biāo)志物,隨后科學(xué)家發(fā)現(xiàn)PROM1也可用于分離鑒定腫瘤干細(xì)胞(cancer stem cells,CSCs)?,F(xiàn)有研究揭示,PROM1不僅能作為各種干細(xì)胞、CSCs以及腫瘤細(xì)胞的標(biāo)記,還能介導(dǎo)PI3K/Akt、Akt、Src-FAK等信號通路,影響PROM1細(xì)胞的行為,其表達量與癌癥治療的效果也密切相關(guān)。因此,PROM1作為腫瘤治療靶點或預(yù)后的標(biāo)志物,越來越受到重視![6]

PROM1蛋白結(jié)構(gòu)示意圖

圖1. PROM1蛋白結(jié)構(gòu)示意圖 [5]


3. PROM1相關(guān)的調(diào)控功能

目前對PROM1結(jié)構(gòu)的分布及其他相關(guān)的研究推測PROM1具有以下功能:1)調(diào)節(jié)細(xì)胞增殖及分化;2)參與神經(jīng)髓鞘形成;3)參與糖、鐵代謝調(diào)節(jié)和細(xì)胞骨架改變 [7-9]。除了生物學(xué)功能,PROM1作為干細(xì)胞、CSCs和腫瘤細(xì)胞的標(biāo)志物,在分子調(diào)控上也發(fā)揮著重要作用,與腫瘤細(xì)胞的信號通路轉(zhuǎn)導(dǎo)相關(guān),如p38MAPK及P13k/Akt途徑、NOTCH、Ras/MEK/ERK、mTOR等信號。

在神經(jīng)膠質(zhì)瘤中,PROM1蛋白的C端胞質(zhì)結(jié)構(gòu)域第828位酪氨酸殘基的磷酸化介導(dǎo)PROM1與p85之間的相互作用,通過激活PI3K/Akt信號通路,從而促進神經(jīng)膠質(zhì)瘤干細(xì)胞的致瘤能力。當(dāng)敲低PROM1時則可有效抑制PI3K/Akt途徑的活性,降低神經(jīng)膠質(zhì)瘤干細(xì)胞的自我更新和致瘤性。此外,PROM1酪氨酸殘基的磷酸化能被PTPRK去除,PTPRK與PROM1羧基末端區(qū)域結(jié)合,催化PROM1的酪氨酸第828位和第852位去磷酸化,調(diào)節(jié)PROM1介導(dǎo)的Akt信號轉(zhuǎn)導(dǎo) (圖2[10-11]

PROM1相關(guān)的調(diào)控功能

圖2. PROM1相關(guān)的調(diào)控功能 [11]

同樣在膠質(zhì)瘤中,研究發(fā)現(xiàn)PROM1細(xì)胞的自我更新可能與HEDGEHOG-GLI(HH-GLI)通路相關(guān),并且其表達了干細(xì)胞特征基因,如OLIG2BMI1、BCAN、OCT.4NANOG、PTENABCG2、PDGFR-A、SOX2和NRD1。此外,PROM1/CD133+細(xì)胞比PROM1/CD133-細(xì)胞表達更高水平的神經(jīng)前體細(xì)胞標(biāo)志物CD90、CD44、CXCR4、nestin等等;同樣,PROM1/CD133+細(xì)胞表達高水平的抗凋亡基因,如Bcl-2Bcl-xL、FLIP、c-IAP2、XIAP、NAIP [12]


4. PROM1在疾病中的作用

PROM1作為多種腫瘤共同的細(xì)胞表面標(biāo)志物已成為研究熱點。腫瘤干細(xì)胞(CSCs)在腫瘤的耐藥、轉(zhuǎn)移復(fù)發(fā)過程中發(fā)揮關(guān)鍵作用。研究發(fā)現(xiàn)PROM1/CD133+細(xì)胞在卵巢癌、神經(jīng)系統(tǒng)腫瘤、肺癌、胰腺癌、前列腺癌、黑色素瘤等多種腫瘤中具有CSCs特征 [13]。因此,PROM1有望在干細(xì)胞相關(guān)疾病的治療中發(fā)揮巨大作用。

4.1 PROM1和腫瘤干細(xì)胞相關(guān)疾病

在膠質(zhì)瘤細(xì)胞系中,PROM1的高表達,可促進神經(jīng)膠質(zhì)瘤干細(xì)胞的自我更新和致瘤性。

另有研究提示,氧分壓水平可能影PROM1的表達,甚至PROM1基因的轉(zhuǎn)錄翻譯。在缺氧參與的PROM1表達調(diào)節(jié)中,缺氧誘導(dǎo)因子(hypoxia induced factor α,HIF-α)及SOX2起調(diào)節(jié)轉(zhuǎn)錄作用 [15]。另有實驗數(shù)據(jù)表明,在胃腫瘤細(xì)胞系中SOX17的表達與PROM1的表達相關(guān),而前者是維持自我更新能力和干細(xì)胞特性的重要轉(zhuǎn)錄因子 [16]。

在轉(zhuǎn)移性乳腺癌患者的腫瘤細(xì)胞中發(fā)現(xiàn)PROM1與EMT標(biāo)志物之間具有密切關(guān)系,N-鈣粘蛋白與PROM1蛋白的表達呈正相關(guān),揭示了在乳腺癌中腫瘤干細(xì)胞與上皮間質(zhì)轉(zhuǎn)化的相關(guān)性 [17]。在肝癌細(xì)胞中,PROM1/CD133+細(xì)胞的體外增殖能力,在免疫缺陷小鼠體內(nèi)的成瘤能力均明顯強于PROM1/CD133-細(xì)胞,且PROM1/CD133+細(xì)胞低表達成熟肝臟細(xì)胞 [18]。

在人轉(zhuǎn)移性結(jié)腸癌標(biāo)本中發(fā)現(xiàn)PROM1/CD133+及PROM1/CD133-細(xì)胞均能在體內(nèi)外成瘤,但CD133+細(xì)胞表現(xiàn)出更強的侵襲性 [19]。在黑色素瘤中,CD133-和CD133+細(xì)胞均能成瘤,且均能分化使瘤體中CD133+/CD133-細(xì)胞比例與初始腫瘤相似 [20]。在卵巢癌中,CD133+細(xì)胞具有CSCs特征,且可通過CCL5介導(dǎo)的上皮間質(zhì)轉(zhuǎn)化導(dǎo)致非CSCs轉(zhuǎn)移 [21]。

4.2 PROM1和其它疾病

早期臨床試驗表明,與CD34+細(xì)胞相比,PROM1/CD133+細(xì)胞可以改善移植的狀況。循環(huán)中PROM1/CD133+細(xì)胞,可用于干細(xì)胞治療肌肉萎縮癥 [22];移植PROM1+骨髓可以改善梗死心肌的功能 [23]。此外,PROM1與視網(wǎng)膜功能相關(guān)密切相關(guān),研究發(fā)現(xiàn)PROM1基因中一個單核苷酸轉(zhuǎn)移突變會導(dǎo)致常染色體隱性視網(wǎng)膜變性疾病。敲除小鼠PROM1基因后表現(xiàn)出視網(wǎng)膜退化而失明 [24]。在人類內(nèi)皮細(xì)胞系中的PROM1直接和血管內(nèi)皮生長因子VEGF互相影響 [25]。PROM1的敲除還會導(dǎo)致腸道炎癥的發(fā)生,推測其在維持腸道的平衡過程中發(fā)揮重要的作用 [26]。


5. PROM1的臨床在研藥物

目前已有多款針對PROM1的臨床藥物在研(表1),主要用于癌癥治療,如膠質(zhì)母細(xì)胞瘤、卵巢上皮癌。其中靶向PROM1的ICT-121、COR-3、293C3-SDIE均為單克隆抗體免疫療法,暫未公布臨床數(shù)據(jù)。另外,隨著腫瘤干細(xì)胞理論的不斷進步完善,在探索治療腫瘤的過程中,CSCs已經(jīng)成為最重要的靶點之一。如前所述,已有研究團隊開發(fā)出一種基于納米載體-水凝膠超結(jié)構(gòu)系統(tǒng)的CAR-MΦ細(xì)胞療法,靶向CD133-GSCs,其在復(fù)發(fā)性膠質(zhì)母細(xì)胞瘤的免疫治療方面取得了突破性進展。PROM1作為多種實體腫瘤干細(xì)胞表面的特異性標(biāo)志物,其扮演的角色中也越來越被關(guān)注。相信未來在更多的PROM1抗體被研發(fā)出來以后,聯(lián)合各種現(xiàn)代分子實驗技術(shù),PROM1的更多生物學(xué)功能也會被進一步闡明,從而為癌癥疾病提供新的治療方法。

藥物 靶點 作用機制 藥物類型 在研適應(yīng)癥 在研機構(gòu) 最高研發(fā)狀態(tài)
ICT-121 CD133;EEF2 CD133調(diào)節(jié)劑 樹突狀細(xì)胞疫苗 膠質(zhì)母細(xì)胞瘤 Torrey Pines Institute For Molecular Studies, Inc.;Formatech, Inc.; 臨床1期
OXS-1650 CD133 蛋白質(zhì)生物合成抑制劑;CD133抑制劑;EEF2抑制劑 ADC;單克隆抗體 實體瘤;卵巢上皮癌 University of Minnesota;University of Minnesota Masonic Cancer Center;GT Biopharma, Inc. 臨床1期
CNTY-103 CD133 自然殺傷細(xì)胞替代物;免疫細(xì)胞毒性;CD133調(diào)節(jié)劑 CAR-NK 膠質(zhì)母細(xì)胞瘤 Century Therapeutics, Inc. 臨床前
COR-3 CD133;GPVI CD133調(diào)節(jié)劑;GPVI抑制劑 單克隆抗體 Acute Coronary Syndrome
急性冠狀動脈綜合征;Vascular restenosis
血管再狹窄;Cardiovascular Diseases
心血管疾病
advanceCOR GmbH 臨床前
293C3-SDIE CD133 CD133抑制劑 單克隆抗體;單鏈Fv片段抗體 / / 藥物發(fā)現(xiàn)
rAAV vector prominin-1 gene therapy (Technische Universitat Dresden) CD133 CD133抑制劑 腺相關(guān)病毒基因治療 / / 藥物發(fā)現(xiàn)

表1:PROM1的臨床在研藥物

為鼎力協(xié)助各藥企針對PROM1在腫瘤臨床中的研究,CUSABIO推出PROM1活性蛋白產(chǎn)品(Code: CSB-MP018751HU(A4)),助力您在PROM1機制方面的研究或其潛在臨床價值的探索。

Recombinant Human Prominin-1(PROM1)-VLPs (Active)

High Specifity Validated by SDS-PAGE

The high specifity was validated by SDS-PAGE. CSB-MP018751HU(A4) is detected by Mouse anti-6*His monoclonal antibody.

Excellent Bioactivity Validated by Functional ELISA

Immobilized PROM1 at 5 μg/mL can bind Anti-PROM1 recombinant antibody (CSB-RA018751MA1HU), the EC50 is 0.4322-0.7189 ng/mL.


參考文獻:

[1] Chen, Chen, et al. "Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy." Science Translational Medicine 14.656 (2022): eabn1128.

[2] Weigmann, Anja, et al. "Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells." Proceedings of the National Academy of Sciences 94.23 (1997): 12425-12430.

[3] Barzegar Behrooz, Amir, Amir Syahir, and Syahida Ahmad. "CD133: beyond a cancer stem cell biomarker. "Journal of drug targeting 27.3 (2019): 257-269.

[4] Saha, Subbroto Kumar, et al. "PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis." Cancer gene therapy 27.3-4 (2020): 147-167.

[5] Miraglia, Sheri, et al. "A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning." Blood, The Journal of the American Society of Hematology 90.12 (1997): 5013-5021.

[6] Aghajani, Marjan, et al. "New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation." journal of cellular physiology 234.12 (2019): 21642-21661.

[7] Zhang, Hua, and SuYi Li. "Study progression of CD133 as a marker of cancer stem cells." Chin J Cancer 29.3 (2010): 243-247.

[8] Fukamachi, Hiroshi, et al. "CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation." Cancer science 102.7 (2011): 1313-1321.

[9] Matsumoto, Kazuko, et al. "mTOR signal and hypoxia-inducible factor-1α regulate CD133 expression in cancer cells." Cancer research 69.18 (2009): 7160 -7164.

[10] Shimozato, O., et al. "Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation." Oncogene 34.15 (2015): 1949-1960.

[11] Matsushita, Masashi, et al. "PTPRK suppresses progression and chemo-resistance of colon cancer cells via direct inhibition of pro -oncogenic CD 133." FEBS Open Bio 9.5 (2019): 935-946.

[12] You, Hanning, Wei Ding, and C. Bart Rountree. "Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-β." Hepatology 51.5 (2010): 1635-1644.

[13] Grabovenko, F. I., et al. "Protein CD133 as a tumor stem cell marker." Zhurnal Voprosy Neirokhirurgii Imeni NN Burdenko 86.6 (2022): 113-120.

[14] Ahmed, Syed Ijlal, et al. "CD133 expression in glioblastoma multiforme: a literature review." Cureus 10.10 (2018).

[15] Chédeville, Agathe L., and Patricia A. Madureira. "The role of hypoxia in glioblastoma radiotherapy resistance. "Cancers 13.3 (2021): 542.

[16] Yiming, Li, et al. "CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis." oncotarget 6.39 (2015): 42019-42027.

[17] Brugnoli, Federica, et al. "CD133 in breast cancer cells: more than a stem cell marker." journal of oncology 2019 (2019).

[18] Bauer, Nicola, et al. "New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133)." Cells Tissues Organs 188.1-2 (2008): 127-138.

[19] Akbari, Morteza, et al. "CD133: An emerging prognostic factor and therapeutic target in colorectal cancer." cell biology international 44.2 (2020): 368-380.

[20] Madjd, Zahra, et al. "Expression of CD133 cancer stem cell marker in melanoma: a systematic review and meta-analysis." the International journal of biological markers 31.2 (2016): 118-125.

[21] Zhou, Quan, et al. "Prognostic value of cancer stem cell marker CD133 in ovarian cancer: a meta-analysis." international journal of clinical and experimental medicine 8.3 (2015): 3080.

[22] Farini, Andrea, et al. "Cell based therapy for Duchenne muscular dystrophy." journal of cellular physiology 221.3 (2009): 526-534.

[23] Donndorf, Peter, and Gustav Steinhoff. "CD133-positive cells for cardiac stem cell therapy: current status and outlook." Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology (2013): 215-227.

[24] Mohammad, Ghulam, et al. "Functional links between gelatinase B/matrix metalloproteinase-9 and prominin-1/CD133 in diabetic retinal vasculopathy and neuropathy." Progress in retinal and eye research 43 (2014): 76-91.

[25] Catalano, Veronica, et al. "CD133 as a target for colon cancer." Expert opinion on therapeutic targets 16.3 (2012): 259-267.

[26] Wen, Lei, et al. "Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review." ploS one 8.3 (2013): e59154.

特別關(guān)注