Your Good Partner in Biology Research

MUC17:粘蛋白“冷”靶點,探索胃癌新療法!

日期:2023-01-04 09:50:31

近來越來越多的研究證實,粘蛋白多樣化的生物學(xué)功能在腫瘤形成、細(xì)胞粘附、免疫應(yīng)答以及細(xì)胞信號傳導(dǎo)中起著至關(guān)重要的作用。當(dāng)前,多個粘蛋白已成為腫瘤免疫治療的火熱靶點,如MUC1,MUC16。此外,根據(jù)ClinicalTrials數(shù)據(jù)顯示,新近一項基于MUC17靶點(AMG199)的雙抗臨床項目,正在美國開展I期研究(NCT04117958),用于轉(zhuǎn)移性胃癌和胃食管交界癌(G/GEJ)患者,這是第一個將MUC17作為潛在抗腫瘤靶點的臨床試驗。

在腫瘤組織中,粘蛋白家族靶點多出現(xiàn)異常表達(dá),與腫瘤的浸潤、轉(zhuǎn)移及預(yù)后相關(guān)。近年來,多個粘蛋白被認(rèn)為是某些癌癥的重要生物標(biāo)志物,以及非常具有前景的治療靶點。相比其它火熱的粘蛋白靶點,MUC17作為粘蛋白“冷”靶點,雖尚未經(jīng)廣泛推廣、暫無藥物上市,然而陸續(xù)的研究表明,MUC17是潛力非常不錯的免疫靶點!或許能為胃癌和胃食管交界癌(G/GEJ)或其它疾病治療帶來新曙光!


1. 什么是粘蛋白(Mucin)?

粘蛋白(Mucin,MUC)是上皮細(xì)胞產(chǎn)生、分泌的以粘液為主要成分的高分子糖蛋白。迄今為止,已發(fā)現(xiàn)有22種Mucin蛋白,根據(jù)黏蛋白的功能將其分為兩類,膜結(jié)合型粘蛋白(MUC1、MUC3A、MUC3B、MUC4、MUC12、MUC13、MUC14、MUC15、MUC16、MUC17、MUC20MUC21、MUC22)和分泌型粘蛋白(MUC2MUC5AC、MUC5BMUC6、MUC7、MUC8、MUC9、MUC19) [1-3]。分泌型粘蛋白可以形成物理屏障,作為一種黏液凝膠,為呼吸道和胃腸道上皮細(xì)胞提供保護??缒ば驼车鞍淄ㄟ^它們胞外域的O糖基化串聯(lián)重復(fù)序列形成棒狀結(jié)構(gòu),構(gòu)建保護性的黏液凝膠層 [3]。大量炎癥細(xì)胞因子,比如白介素-1β(interleukin-1β,IL-1β)、IL-4IL-6TGF-β、IL-9IL-13、IFN-γTNF-α,已經(jīng)被證明能促進體外培養(yǎng)的上皮細(xì)胞內(nèi)黏蛋白的表達(dá) [4-5]。

黏蛋白廣泛分布于機體多種器官和組織的黏膜表面,如消化道、呼吸道、生殖道、角結(jié)膜,以及肝臟、胰腺、膽囊、腎、唾液腺和淚腺上皮細(xì)胞 [3-4]。近年發(fā)現(xiàn)黏蛋白參與上皮細(xì)胞的分化、更新、調(diào)節(jié)細(xì)胞黏附、細(xì)胞信號轉(zhuǎn)導(dǎo)等過程 [1]。有研究提示,粘蛋白可作為預(yù)測COVID-19易感性的潛在工具 [5]。此外,大量研究已證實,黏蛋白基因在腫瘤的發(fā)生發(fā)展中發(fā)揮重要作用,且因其具有組織特異性和細(xì)胞特異性,目前越來越受到國內(nèi)外學(xué)者的重視(圖1[6-10]。

黏蛋白在腫瘤發(fā)生發(fā)展中發(fā)揮重要作用

圖1. 黏蛋白在腫瘤發(fā)生發(fā)展中發(fā)揮重要作用 [6]


2. 什么是MUC17?

MUC17(Mucin-17,又稱MUC3)是一種跨膜粘蛋白,由位于7號染色體的q22位點的MUC17基因編碼。MUC17于2002年發(fā)現(xiàn)并被鑒定,由跨膜段、胞內(nèi)段和胞外段三部分組成(2[11, 14]。從氨基末端依次為粘蛋白樣結(jié)構(gòu)(串聯(lián)重復(fù)序列),EGF(表皮生長因子)樣區(qū)域,N-糖基化區(qū)域,第二個EGF樣區(qū)域,疏水的跨膜段,及胞漿內(nèi)部的梭基末端 [12]。MUC17依靠羧基端附近跨膜區(qū)域與細(xì)胞膜結(jié)合,可參與細(xì)胞內(nèi)信號傳遞。胞外段決定著MUC特異性的空間結(jié)構(gòu)和免疫原性 [14]。MUC17的表達(dá)可增強腸道粘液屏障,促進炎癥愈合。在上皮細(xì)胞中,MUC17起到參與信號轉(zhuǎn)導(dǎo),維持管腔結(jié)構(gòu),提供細(xì)胞保護,并給予失去極性的癌細(xì)胞抗黏附性能,從而使腫瘤細(xì)胞失去極性 [15]。

MUC17主要表達(dá)于腸道,是腸道黏液的主要組成成分。MUC17表達(dá)可在胎兒小腸和結(jié)腸內(nèi)被檢測。多數(shù)研究表明,正常胃粘膜無表達(dá)或少表達(dá) [16-18]。研究發(fā)現(xiàn),從正常胃黏膜、腸化黏膜、進展期胃癌的發(fā)展過程中,MUC17的表達(dá)逐漸明顯增高,其低表達(dá)與胃癌預(yù)后不良相關(guān)。進一步研究顯示MUC17的表達(dá)與腫瘤的分化程度呈負(fù)相關(guān),提示MUC17可作為胃癌的診斷和治療靶標(biāo) [19]。目前,基于MUC17的雙抗正在進行臨床研究,用于陽性轉(zhuǎn)移性胃癌和胃食管交界癌患者 [20]。

人或鼠VSIG4結(jié)構(gòu)

圖2. MUC17的結(jié)構(gòu) [14]


3. MUC17介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路

MUC17作為具重要生物學(xué)功能的膜結(jié)合型粘蛋白,根據(jù)國內(nèi)外文獻報道,MUC17表達(dá)水平與多種炎癥、腫瘤細(xì)胞增殖相關(guān),這為MUC17相關(guān)性疾病的防治提供了重要線索,但其分子機制不清。

在結(jié)腸腺癌細(xì)胞中,用促炎性細(xì)胞因子TNFα的長期刺激,誘導(dǎo)炎性狀態(tài),可導(dǎo)致MUC17的增加,進而保護結(jié)腸腺癌細(xì)胞免受腸病原性大腸桿菌的黏附,其結(jié)果說明MUC17在炎癥中可起到防御作用(圖3[21]。另有研究提示,MUC17的EGF樣結(jié)構(gòu)域可通過與MYH9相互作用,活化Rho/Rock通路,從而抑制炎癥因子對NFκB通路的活化,最終致使MUC17發(fā)揮了其抗炎的功能 [22]。還有一些關(guān)于MUC17的報道揭示,MUC17的C端與支架蛋白PDZK1結(jié)合,使其穩(wěn)定定位于小腸的腸細(xì)胞頂膜 [23];DNA甲基化和組蛋白H3K9修飾有助于MUC17表達(dá) [24]。

同樣在結(jié)腸癌中,有研究揭示MUC17可與EGFR家族的ERBB2結(jié)合并使其磷酸化,激活Wnt信號,調(diào)控EMT靶基因表達(dá)進而啟動EMT [25-26]。此外,還有研究表明,初乳來源的、含TFLK基序的合成肽,能刺激結(jié)腸細(xì)胞株HT29細(xì)胞MUC17表達(dá)增加。TFLK基序是MSAA3蛋白的特征結(jié)構(gòu)序列,而MSAA3蛋白對新生兒預(yù)防病原菌侵襲、保護新生兒胃腸道有重要作用。該機制對增強腸道粘液屏障,防治腸道多種炎癥性疾病將提供新的思路 [27-28]。

MUC17在炎癥中可起到防御作用

圖3. MUC17在炎癥中可起到防御作用 [21]


4. MUC17在腫瘤中的作用

MUC17作為一個典型的跨膜黏蛋白,MUC17在抵御細(xì)菌侵襲、保護腸黏膜、促進上皮增生及炎癥愈合中發(fā)揮著重要作用,其表達(dá)減少是多種腸道疾病如新生兒腸炎、炎癥性腸病發(fā)生發(fā)展的重要原因 [29, 30]。目前,大量的研究集中在MUC17與胃腸道腫瘤和其它腫瘤,如結(jié)腸癌、胃癌、胰腺癌、食管癌、乳腺癌 [31-40]。

在結(jié)腸癌中,采用免疫組織化學(xué)法,檢測MUC17在結(jié)直腸癌及癌旁相對正常黏膜組織中的表達(dá),MUC17在正常黏膜組織也呈100%陽性表達(dá),結(jié)直腸癌標(biāo)本中MUC17陽性表達(dá)率為53.3%,表達(dá)呈下調(diào)趨勢,且MUC17的表達(dá)與結(jié)直腸癌的淋巴結(jié)轉(zhuǎn)移、浸潤深度和分期密切相關(guān) [16, 31]。

在胰腺癌中,與正常胰腺組織比較,MUC17在胰腺癌組織中過表達(dá),用免疫組化檢測胰腺導(dǎo)管腺癌組織發(fā)現(xiàn),MUC17表達(dá)顯著增強,提示MUC17可作為獨立的預(yù)后因素之一 [32-33]。另有研究提示,MUC17的表達(dá)變化與Barrett食管、食管腺癌、賁門腸化和賁門癌的發(fā)展呈正相關(guān) [35-37]。在乳腺癌中,研究發(fā)現(xiàn)MUC17敲低與患者藥物敏感性有關(guān),進一步揭示MUC17和PCNX1可作為乳腺癌化療反應(yīng)的潛在生物標(biāo)志物,調(diào)節(jié)其活性可以影響化療耐藥性 [25, 38-39]。

在胃癌及胃食管交界處癌(G/GEJ)中,有研究證實MUC17在G/GEJ細(xì)胞膜上過表達(dá),屬于腫瘤相關(guān)抗原(TAA)。胃癌與胃粘膜屏障功能障礙有關(guān),而胃粘膜屏障的損害通常會導(dǎo)致慢性炎癥,這是胃癌發(fā)生的主要因素。進一步研究發(fā)現(xiàn),當(dāng)MUC17表達(dá)降低,腫瘤侵襲細(xì)胞個數(shù)減少,細(xì)胞劃痕愈合率及細(xì)胞增殖率降低,克隆形成能力減弱。敲低MUC17表達(dá)可抑制胃癌細(xì)胞的侵襲和增殖能力,這提示MUC17或?qū)⒖赡艹蔀槲赴┲委煹男掳袠?biāo) [40]。


5. MUC17的臨床應(yīng)用前景

目前已有一款靶向MUC17的雙特異性抗體(AMG199;MUC17 x CD3)獲臨床許可,來自安進生物,用于MUC17陽性的實體腫瘤,包括胃腸癌、胃食管交界處、結(jié)腸直腸癌和胰腺癌。2020年,F(xiàn)DA授予AMG199孤兒藥資格認(rèn)定。2021年ASCO大會上,安進公布了首次在人體的I期開放標(biāo)簽劑量遞增研究,評估AMG199治療MUC17陽性胃/胃食管交界癌癥患者的劑量限制性毒性及有效率,并確定最大耐受劑量(MTD)和/或推薦的2期劑量(RP2D),預(yù)計在2024年3月完成70名受試者臨床I期研究。

大量研究提示粘蛋白在不同惡性腫瘤中過表達(dá),粘蛋白與腫瘤的密切關(guān)系及誘發(fā)的免疫反應(yīng)為基于粘蛋白的抗腫瘤藥物設(shè)計提供了重要線索,許多新突破,新的藥物、新的治療方案正在路上。與此同時,隨著對粘蛋白MUC17結(jié)構(gòu)和功能研究的進一步深入,MUC17在腫瘤中的研究展示了良好的應(yīng)用前景,我們也期待MUC17靶點在腫瘤免疫治療方面帶來創(chuàng)新性或突破性進展!

為鼎力協(xié)助各藥企針對MUC17在腫瘤等疾病治療領(lǐng)域上的研發(fā),CUSABIO推出MUC17活性蛋白產(chǎn)品(Code: CSB-MP727848HU,助力您在MUC17機制方面的研究或其潛在臨床價值的探索。

Recombinant Human Mucin-17(MUC17), partial (Active)

High Purity Validated by SDS-PAGE

The purity was greater than 95% as determined by SDS-PAGE. (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Excellent Bioactivity Validated by Functional ELISA

Immobilized Human MUC17 at 2 μg/mL can bind Anti-MUC17 recombinant antibody (CSB-RA727848MA1HU), the EC50 is 0.9057-1.259 ng/mL.


參考文獻:

[1] Dekker, Jan, et al. "The MUC family: an obituary." Trends in biochemical sciences 27.3 (2002): 126-131.

[2] Alcantara, Angélica Leite de, et al. "MUC family influence on acute lymphoblastic leukemia in Native American populations from Brazilian Amazon." (2022): e19025-e19025.

[3] Sousa, Andreia M., et al. "Reflections on MUC 1 glycoprotein: the hidden potential of isoforms in carcinogenesis." Apmis 124.11 (2016): 913-924.

[4] D?ugosz, Ewa, et al. "Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes." Parasitology research 114.9 (2015): 3365-3371.

[5] Lin, Susanne Je-Han, Bailey Arruda, and Eric Burrough. "Alteration of Colonic Mucin Composition and Cytokine Expression in Acute Swine Dysentery." Veterinary Pathology 58.3 (2021): 531-541.

[6] Bhatia R, Gautam SK, Cannon A, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38(1-2):223-236.

[7] Brockhausen, Inka, and Jacob Melamed. "Mucins as anti-cancer targets: Perspectives of the glycobiologist." Glycoconjugate Journal 38.4 (2021): 459-474.

[8] Marimuthu, Saravanakumar, et al. "Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression." Cancer and Metastasis Reviews 40.2 (2021): 575-588.

[9] Wi, Dong-Han, Jong-Ho Cha, and Youn-Sang Jung. "Mucin in cancer: a stealth cloak for cancer cells." BMB reports 54.7 (2021): 344.

[10] Kufe, Donald W. "Mucins in cancer: function, prognosis and therapy." Nature Reviews Cancer 9.12 (2009): 874-885.

[11] Shekels LL, Ho SB. Characterization of the mouse Muc3 membrane bound intestinal mucin 5' coding and promoter regions: regulation by inflammatory cytokines. Biochim Biophys Acta. 2003;1627(2-3):90-100.

[12] Desseyn, Jean-Luc, Daniel Tetaert, and Valérie Gouyer. "Architecture of the large membrane-bound mucins." Gene 410.2 (2008): 215-222.

[13] Gum Jr, James R., et al. "MUC17, a novel membrane-tethered mucin." Biochemical and biophysical research communications 291.3 (2002): 466-475.

[14] Moniaux, Nicolas, et al. "Characterization of human mucin MUC17: Complete coding sequence and organization." Journal of Biological Chemistry 281.33 (2006): 23676-23685.

[15] Gum Jr, James R., et al. "MUC17, a novel membrane-tethered mucin." Biochemical and biophysical research communications 291.3 (2002): 466-475.

[16] Senapati, Shantibhusan, et al. "Expression of intestinal MUC17 membrane-bound mucin in inflammatory and neoplastic diseases of the colon." Journal of clinical pathology 63.8 (2010): 702-707.

[17] Gál, Eleonóra, et al. "Importance of MUC17 in the Bile-Induced Pancreatic Cancer Progression." (2022).

[18] Layunta, Elena, et al. "IL-22 promotes the formation of a MUC17 glycocalyx barrier in the postnatal small intestine during weaning." Cell Reports 34.7 (2021): 108757.

[19] Bailis, Julie M., et al. "Preclinical evaluation of BiTE? immune therapy targeting MUC17 or CLDN18. 2 for gastric cancer." Cancer Research 80.16_Supplement (2020): 3364-3364.

[20] Lordick, F., et al. "P-76 A phase 1 study of AMG 199, a half-life extended bispecific T-cell engager (HLE BiTE?) immune therapy, targeting MUC17 in patients with gastric and gastroesophageal junction cancer." Annals of Oncology 31 (2020): S114.

[21] Schneider, Hannah, et al. "The human transmembrane mucin MUC17 responds to TNFα by increased presentation at the plasma membrane." Biochemical Journal 476.16 (2019): 2281-2295.

[22] Yang, Bing, et al. "Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop." Journal of Experimental & Clinical Cancer Research 38.1 (2019): 1-13.

[23] Malmberg, Emily K., et al. "The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine." Biochemical Journal 410.2 (2008): 283-289.

[24] Kitamoto, Sho, et al. "DNA methylation and histone H3-K9 modifications contribute to MUC17 expression." Glycobiology 21.2 (2011): 247-256.

[25] Yu, Kuan, et al. "Intratumoral PD-1+ CD8+ T cells associate poor clinical outcomes and adjuvant chemotherapeutic benefit in gastric cancer." British journal of cancer 127.9 (2022): 1709-1717.

[26] Al Amri, Waleed S., et al. "Genomic and Expression Analyses Define MUC17 and PCNX1 as Predictors of Chemotherapy Response in Breast CancerMUC17 and PCNX1 Predict Chemoresponse." Molecular cancer therapeutics 19.3 (2020): 945-955.

[27] Pan, Qiong, et al. "Enhanced Membrane-tethered Mucin 3 (MUC3) Expression by a Tetrameric Branched Peptide with a Conserved TFLK Motif Inhibits Bacteria Adherence*[S]." Journal of Biological Chemistry 288.8 (2013): 5407-5416.

[28] Qiong, P. A. N., et al. "Influence of MSAA3 protein fragment and modified peptide thereof on the MUC3 expression of HT29 cells." Medical Journal of Chinese People's Liberation Army 36.10 (2011): 1062-1064.

[29] Resta-Lenert, Silvia, et al. "Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity." American Journal of Physiology-Gastrointestinal and Liver Physiology 300.6 (2011): G1144-G1155.

[30] Yang, Ching-Wen, et al. "Genetic variations of MUC17 are associated with endometriosis development and related infertility." BMC medical genetics 16.1 (2015): 1-7.

[31] Jiang, Zhipeng, et al. "Analysis of TGCA data reveals genetic and epigenetic changes and biological function of MUC family genes in colorectal cancer." Future Oncology 15.35 (2019): 4031-4043.

[32] Kitamoto, Sho, et al. "Expression of MUC17 is regulated by HIF1α-mediated hypoxic responses and requires a methylation-free hypoxia responsible element in pancreatic cancer." (2012): e44108.

[33] Kitamoto, Sho, et al. "Expression of MUC17, a marker of pancreatic cancer, is under the control of epigenetic modifications." Cancer Research 71.8_Supplement (2011): 82-82.

[34] Hyland, Paula L., et al. "Global changes in gene expression of Barrett's esophagus compared to normal squamous esophagus and gastric cardia tissues." PLoS One 9.4 (2014): e93219.

[35] Ye et al. "The role of MUC1, MUC3 and MUC6 in Barrett's esophagus, esophageal adenocarcinoma, cardia intestinal metaplasia and cardia adenocarcinoma." 2006.

[36] Glickman, Jonathan N., Aliakbar Shahsafaei, and Robert D. Odze. "Mucin core peptide expression can help differentiate Barrett's esophagus from intestinal metaplasia of the stomach." The American journal of surgical pathology 27.10 (2003): 1357-1365.

[37] Lonie, James M., Andrew P. Barbour, and Riccardo Dolcetti. "Understanding the immuno-biology of oesophageal adenocarcinoma: Towards improved therapeutic approaches." Cancer Treatment Reviews 98 (2021): 102219.

[38] Rakha, Emad A., et al. "Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer." Modern Pathology 18.10 (2005): 1295-1304.

[39] Al Amri, W., et al. "Abstract P3-06-19: MUC17 and PCNX1 as mediators of chemotherapy response in breast cancer." Cancer Research 79.4_Supplement (2019): P3-06.

[40] Chao, Joseph, et al. "Trial in progress: A phase I study of AMG 199, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy, targeting MUC17 in patients with gastric and gastroesophageal junction (G/GEJ) cancer." (2020): TPS4649-TPS4649.

特別關(guān)注